Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077102    DOI: 10.1088/1674-1056/19/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structure and optical properties of rutile RuO2 from first principles

Yang Ze-Jin (杨则金)b, Guo Yun-Dong (郭云东)a, Li Jin (李劲)bc, Liu Jin-Chao (刘锦超)b, Dai Wei (戴伟)bd, Cheng Xin-Lu (程新路)b, Yang Xiang-Dong (杨向东)b
a School of Physics and Electronic Information Engineering, Neijiang Normal University, Neijiang 641112, China; b Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; c College of Material and Chemical Engineering, Hainan University, Haikou 570228, China; d Chinese Academy of Engineering Physics, Mianyang 621900, China
Abstract  The systematic trends of electrionic structure and optical properties of rutile (P42/mnm) RuO2 have been calculated by using the plane-wave norm-conserving pseudopotential density functional theory (DFT) method within the generalised gradient approximation (GGA) for the exchange—correlation potential. The obtained equilibrium structure parameters are in excellent agreement with the experimental data. The calculated bulk modulus and elastic constants are also in good agreement with the experimental data and available theoretical calculations. Analysis based on electronic structure and pseudogap reveals that the bonding nature in RuO2 is a combination of covalent, ionic and metallic bonds. Based on a Kramers—Kronig analysis of the reflectivity, we have obtained the spectral dependence of the real and imaginary parts of the complex dielectric constant ($\varepsilon$and $\varepsilon$2, respectively) and the refractive index (n); and comparisons have shown that the theoretical results agree well with the experimental data as well. Meanwhile, we have also calculated the absorption coefficient, reflectivity index, electron energy loss function of RuO2 for radiation up to 30 eV. As a result, the predicted reflectivity index is in good agreement with the experimental data at low energies.
Keywords:  first principle      rutile RuO2      electronic structure      optical property  
Received:  10 October 2008      Revised:  20 January 2010      Accepted manuscript online: 
PACS:  71.20.Ps (Other inorganic compounds)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  62.20.D- (Elasticity)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  71.15.Dx (Computational methodology (Brillouin zone sampling, iterative diagonalization, pseudopotential construction))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the China Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant Nos. 10676025 and 10574096), and the Science-Technology Foundation for Young Scientist of Sichuan Province, China (Grant No. 09ZQ026-049).

Cite this article: 

Yang Ze-Jin (杨则金), Guo Yun-Dong (郭云东), Li Jin (李劲), Liu Jin-Chao (刘锦超), Dai Wei (戴伟), Cheng Xin-Lu (程新路), Yang Xiang-Dong (杨向东) Electronic structure and optical properties of rutile RuO2 from first principles 2010 Chin. Phys. B 19 077102

[1] Goodenough J B In: Reiss H (Ed.) 1971 Progress in Solid-State Chemistry Vol.5 (Oxford: Pergamon)
[2] Hugosson H W, Grechnev G E, Ahuja R, Helmersson U, Sa L and Eriksson O 2002 Phys. Rev. B 66 174111
[3] Tse J S, Klug D D, Uehara K, Li Z Q, Haines J and Léger J M 2000 Phys. Rev. B 61 10029
[4] Yang Z J, Guo Y D, Wang G Ch, Li J, Dai W, Liu J Ch, Cheng X L and Yang X D 2009 Chin. Phys. B bf18 4981
[5] Sakata T, Kawai T and Hashimoto K 1982 Chem. Phys. Lett. 88 50
[6] Shafer M V and Armstrong J 1978 IBM Tech. Discl. Bull. 20 4633
[7] Pedder J D 1976 Science Technol. (USA) 2 259
[8] Leger J M and Haines J 1997 Endeavour. 27 121
[9] Leger J M, Haines J and Blanzat B 1994 J. Mater. Sci. Lett. 13 1688
[10] Haines J, Leger J M and Shulte O 1996 Science. 271 629
[11] Huntington J B In: Seitz F and Turnbull D 1958 Solid State Physics Vol.7 (New York: Academic)
[12] Burdett J K 1985 Inorg. Chem. 24 2244
[13] Haines J and Léger J M 1993 Phys. Rev. B 48 13344
[14] Rosenblum S S, Weber W H and Chamberland B L 1997 it Phys. Rev. B 56 529
[15] Glassford K M and Chelikowsky J R 1993 Phys. Rev. B bf 47 1732
[16] Lundin U, Fast L, Nordstr"om L, Johansson B, Wills J M and Eriksson O 1998 Phys. Rev. B 57 4979
[17] Benyahia K, Nabi Z, Tadjer A and Khalfi A 2003 Physica B 339 1
[18] Yavorsky B Yu, Krasovska O V, Krasovskii E E, Yaresko A N and Antonov V N 1996 Physica B 225 243
[19] Glassford K M and Chelikowsky J R 1994 Phys. Rev. B bf 49 7107
[20] de Almeida J S and Ahuja R 2006 Phys. Rev. B 73 165102
[21] Daniels R R, Margaritondo G, Georg C A and Lévy F 1984 it Phys. Rev. B 29 1813
[22] Léger J M, Djemia P, Ganot F, Haines J, Pereira A S and Jormada J A H 2001 Appl. Phys. Lett. 79 2169
[23] Payne M C, Teter M P, Allen D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[24] Milman V, Winkler B, White A, Packard C J, Payne M C, Akhmatskaya E V and Nobes R H 2000 Int. J. Quantum. Chem. bf 77 895
[25] Hamann D R, Schl"uter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[26] Bachelet G B, Hamann D R and Schl"uter M 1982 Phys. Rev. B 26 4199
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Meade C and Jeanloz R 1990 Rev. Sci. Instrum. 61 2571
[31] Tsuchida Y and Yagi T 1989 Nature (London) 340 217
[32] Xu J H, Jarlborg T and Freeman A J 1989 Phys. Rev. B bf 40 7939
[33] Haines J, Léger J M, Schulte O and Hull S 1997 Acta Crystallogr., Sect. B: Struct. Sci. 53 880
[34] Boman C E 1970 Acta Chem. Scand. 24 116
[35] Grillo M E 2004 Phys. Rev. B 70 184115
[36] Wallace D C 1992 Thermodynamics of Crystals (New York: Wiley) Chap.1
[37] K"otz R and Stucki S 1986 Electrochim. Acta 31 1311
[38] Riga J, Tenret-No"el C, Pireaux J J, Caudano R, Verbist J J and Gobillon Y 1977 Phys. Scr. 16 351
[39] Krasovska O V, Krasovskii E E and Antonov V N 1995 it Phys. Rev. B 52 11825
[40] Guan L, Liu B T, Li X, Zhao Q X, Wang Y L, Guo J X and Wang S B 2008 Acta Phys. Sin. bf57 482 (in Chinese)
[41] Goel A K, Skorinko G and Pollak F H 1981 Phys. Rev. B 24 7342
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[10] Boron at tera-Pascal pressures
Peiju Hu(胡佩菊), Junhao Peng(彭俊豪), Xing Xie(谢兴), Minru Wen(文敏儒),Xin Zhang(张欣), Fugen Wu(吴福根), and Huafeng Dong(董华锋). Chin. Phys. B, 2022, 31(3): 036301.
[11] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[12] Stability, electronic structure, and optical properties of lead-free perovskite monolayer Cs3B2X9 (B=Sb, Bi; X=Cl, Br, I) and bilayer vertical heterostructure Cs3B2X9/Cs3B2'X9 (B,B'=Sb, Bi; X=Cl, Br, I)
Yaowen Long(龙耀文), Hong Zhang(张红), and Xinlu Cheng(程新路). Chin. Phys. B, 2022, 31(2): 027102.
[13] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[14] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[15] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
No Suggested Reading articles found!