CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Influence of AlN buffer layer thickness on structural properties of GaN epilayer grown on Si (111) substrate with AlGaN interlayer |
Wu Yu-Xin(吴玉新)a), Zhu Jian-Jun(朱建军)a)†, Chen Gui-Feng(陈贵锋)b), Zhang Shu-Ming(张书明)a), Jiang De-Sheng(江德生) a), Liu Zong-Shun(刘宗顺)a), Zhao De-Gang(赵德刚)a), Wang Hui(王辉)a), Wang Yu-Tian(王玉田)a), and Yang Hui(杨辉)a)c) |
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b Institute of Information Function Materials, Hebei University of Technology, Tianjin 300130, China; c Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China |
|
|
Abstract We present the growth of GaN epilayer on Si (111) substrate with a single AlGaN interlayer sandwiched between the GaN epilayer and AlN buffer layer by using the metalorganic chemical vapour deposition. The influence of the AlN buffer layer thickness on structural properties of the GaN epilayer has been investigated by scanning electron microscopy, atomic force microscopy, optical microscopy and high-resolution x-ray diffraction. It is found that an AlN buffer layer with the appropriate thickness plays an important role in increasing compressive strain and improving crystal quality during the growth of AlGaN interlayer, which can introduce a more compressive strain into the subsequent grown GaN layer, and reduce the crack density and threading dislocation density in GaN film.
|
Received: 22 April 2009
Revised: 27 May 2009
Accepted manuscript online:
|
PACS:
|
68.55.A-
|
(Nucleation and growth)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
81.05.Ea
|
(III-V semiconductors)
|
|
68.60.Bs
|
(Mechanical and acoustical properties)
|
|
61.72.Ff
|
(Direct observation of dislocations and other defects (etch pits, decoration, electron microscopy, x-ray topography, etc.))
|
|
68.37.Hk
|
(Scanning electron microscopy (SEM) (including EBIC))
|
|
Fund: Project supported by the National
Natural Science Foundation of China (Grant Nos.~60506001, 60476021,
60576003, 60776047 and 60836003), the National Basic Research
Program of China (Grant No.~2007CB936700), and the Project of
Technological Research and Development of Hebei Province, China
(Grant No.~07215134). |
Cite this article:
Wu Yu-Xin(吴玉新), Zhu Jian-Jun(朱建军), Chen Gui-Feng(陈贵锋), Zhang Shu-Ming(张书明), Jiang De-Sheng(江德生), Liu Zong-Shun(刘宗顺), Zhao De-Gang(赵德刚), Wang Hui(王辉), Wang Yu-Tian(王玉田), and Yang Hui(杨辉) Influence of AlN buffer layer thickness on structural properties of GaN epilayer grown on Si (111) substrate with AlGaN interlayer 2010 Chin. Phys. B 19 036801
|
[1] |
Dadgar A, Blasing J, Diez A, Alam A, Heuken M and Krost A 2000 Jpn. J. Appl. Phys. 39 L1183
|
[2] |
Xiong C B, Jiang F Y, Fang W Q, Wang L and Mo C L 2008 Acta Phys. Sin. 57 3176 (in Chinese)
|
[3] |
Ding Z B, Yao S D, Wang K and Cheng K 2006 Acta Phys. Sin. 55 2977 (in Chinese)
|
[4] |
Dadgar A, Poschenrieder M, Blasing J, Fehse K, Diez A and Krost A 2002 Appl. Phys. Lett. 80 3670
|
[5] |
Wang J F, Yao D Z, Chen J, Zhu J J, Zhao D G, Jiang D S, Yang H andLiang J W 2006 Appl. Phys. Lett. 89 152105
|
[6] |
Liu W, Wang J F, Zhu J J, Jiang D S and Yang H 2007 Appl. Phys. Lett. 90 011914
|
[7] |
Feltin E, Beaumont B, Laügt M, Mierry P de, Vennégu\`{e s P,Lahr\`{e che H, Leroux M and Gibart P 2001 Appl. Phys. Lett. 79 3230
|
[8] |
Liu Z, Wang X L, Wang J X, Hu G X, Guo L C and Li J M 2007 Chin. Phys. 16 1467
|
[9] |
Marchand H, Zhao L, Zhang N, Moran B, Coffie R, Mishra U K, Speak J S,Denbaars S P and Freitas J A 2001 J. Appl. Phys. 89 7846
|
[10] |
Able A, Wegscheider W, Engl K and Zweek J 2005 J. Cryst. Growth 276 415
|
[11] |
Cheng K, Leys M, Degroote S, Van Daele B, Boeykens S, Derluyn J,Germain M, Van Tendeloo G, Engelen J and Borghs G 2006 J. Electron. Mater. 35 592
|
[12] |
Kim M, Do Y, Kang H C, Noh D Y and Park S J 2001 Appl. Phys. Lett. 79 2713
|
[13] |
Arslan E, Ozturk M K, Teke A, Ozcelik S and Ozbay E 2008 J. Phys. D: Appl.Phys. 41 155317
|
[14] |
Wu Y X, Zhu J J, Zhao D G, Liu Z S, Jiang D S, Zhang S M, Wang Y T,Wang H, Chen G F and Yang H 2009 Chin. Phys. B 18 4413
|
[15] |
Zhang N H, Wang X L, Zeng Y P, Xiao H L, Wang J X, Liu X H and Li J M2005 J. Cryst. Growth 280 346
|
[16] |
Raghavan S and Redwing J M 2005 J. Appl. Phys. 98 023514
|
[17] |
Zheng X H, Wang Y T, Feng Z H, Yang H, Chen H, Zhou J M and Liang J W2003 J. Cryst. Growth 250 345
|
[18] |
Amano H, Iwaya M, Kashima T, Katsuragawa M and Akasaki I 1998 Jpn. J. Appl. Phys.37 L1540
|
[19] |
Zhang J C, Zhao D G, Wang J F and Wang Y T 2004 J. Cryst. Growth 268 24
|
[20] |
Follstaedt D M, Lee S R, Provencio P P and Allerman A A 2005 Appl. Phys. Lett.87 121112
|
[21] |
Raghavan S, Weng X, Dickey E and Redwing J M 2006 Appl. Phys. Lett.88 041904
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|