Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 034210    DOI: 10.1088/1674-1056/19/3/034210

Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal

Qi Li-Mei(亓丽梅)a)†, Yang Zi-Qiang(杨梓强) a), Lan Feng(兰峰)a), Gao Xi(高喜)a), and Li Da-Zhi(李大治) b)
a Institute of High Energy Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China; b Institute for Laser Technology, 2-6} Yamada-Oka, suita, Osaka 565-0871, Japan
Abstract  This paper studies dispersion characteristics of the transverse magnetic (TM) mode for two-dimensional unmagnetized dielectric plasma photonic crystal by a modified plane wave method. First, the cutoff behaviour is made clear by using the Maxwell--Garnett effective medium theory, and the influences of dielectric filling factor and dielectric constant on effective plasma frequency are analysed. Moreover, the occurence of large gaps in dielectric plasma photonic crystal is demonstrated by comparing the skin depth with the lattice constant, and the influence of plasma frequency on the first three gaps is also studied. Finally, by using the particle-in-cell simulation method, a transmission curve in the $\varGamma$ -X direction is obtained in dielectric plasma photonic crystal, which is in accordance with the dispersion curves calculated by the modified plane wave method, and the large gap between the transmission points of 27 GHz and 47 GHz is explained by comparing the electric field patterns in particle-in-cell simulation.
Keywords:  plasma photonic crystal      dispersion      plane wave method      particle-in-cell simulation  
Received:  09 March 2009      Revised:  08 June 2009      Accepted manuscript online: 
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  42.70.Qs (Photonic bandgap materials)  
  52.25.Mq (Dielectric properties)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~60571020 and 10975031).

Cite this article: 

Qi Li-Mei(亓丽梅), Yang Zi-Qiang(杨梓强), Lan Feng(兰峰), Gao Xi(高喜), and Li Da-Zhi(李大治) Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal 2010 Chin. Phys. B 19 034210

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Hojo H and Mase A 2004 J. Plasma Fusion Res . 80 89
[4] Liu S, Hong W and Yan N 2006 Int. J. Inf. and MmW. 27 403
[5] Ma L, Zhang H F and Liu S B 2008 Acta Phys. Sin. 57 5089 (in Chinese)
[6] Zhang H F, Ma L and Liu S B 2009 Acta Phys. Sin. 58 1071 (in Chinese)
[7] Sakai O, Sakaguchi T and Tachibana K 2007 Contrib. PlasmaPhys. 47 96
[8] Sakai O, Sakaguchi T and Tachibana K 2005 Appl. Phys. Lett. 87 241505
[9] Sakai O, Sakaguchi T and Tachibana K 2007 J. Appl. Phys.101 073304
[10] Sakai O, Sakaguchi T and Tachibana K 2007 J. Appl. Phys.101 073305
[11] Sakai O and Tachibana K 2007 IEEE Trans. Plas. Sci. 35 1267
[12] Meade R D, Rappe A M, Brommer K M, Joannopoulos J D and Alerhand O L 1993 Phys. Rev. B 48 8434
[13] Kuzmiak V, Maradudin A A and Pincemin F 1994 Phys. Rev. E50 16835
[14] Wang R, Wang X H, Gu B Y and Yang G Z 2001 J. Appl. Phys.90 4307
[15] Luebbers R J, Hunsberger F and Kunz K S 1991 IEEE Trans. Antennas Propagat . 39 29
[16] Pendry J B and MacKinnon A 1992 Phys. Rev. Lett. 69 2772
[17] Li L M and Zhang Z Q 1998 Phys. Rev. B 58 9587
[18] Zhang W, Chan C T and Sheng P 2001 Opt. Express 8 203
[19] Xu X C, Xi Y G, Han D Z, Liu X H and Zi J 2005 Appl. Phys.Lett. 86 091112-1
[20] Pendry J B, Holden A J, Stewart W J and Youngs I 1996 Phys. Rev. Lett. 76 4773
[21] Granqvist C G and Hunderi O 1977 Phys. Rev. B 16 3513
[22] Weissker H C, Furthmuller J and Bechstedt F 2003 Phys. Rev. B 67 165322
[23] Fan C Z, Wang G and Hang J P 2008 J. Appl. Phys. 103 094107
[24] Sakurai J J 1994 Modern Quantum Mechanics (New York: Addison-Wesley)
[25] Meade R D, Rappe A M, Brommer K D and Joannopoulos J D 1993 J. Opt. Soc. Am. B 10 328
[26] Joannopoulos J D, Johnson S G, Winn J N and Meade R D 2008 PhotonicCrystals-Molding the Flow of Light (Princeton: Princeton University Press)p69
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[3] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
[4] Kinetic Alfvén waves in a deuterium-tritium fusion plasma with slowing-down distributed α-particles
Fei-Fei Lu(路飞飞) and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(3): 035201.
[5] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[6] Spectral polarization-encoding of broadband laser pulses by optical rotatory dispersion and its applications in spectral manipulation
Xiaowei Lu(陆小微), Congying Wang(王聪颖), Xuanke Zeng(曾选科), Jiahe Lin(林家和), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Huangcheng Shangguan(上官煌城), Zhenkuan Chen(陈振宽), Shixiang Xu(徐世祥), and Jingzhen Li(李景镇). Chin. Phys. B, 2021, 30(7): 077801.
[7] Design and fabrication of GeAsSeS chalcogenide waveguides with thermal annealing
Limeng Zhang(张李萌), Jinbo Chen(陈锦波), Jierong Gu(顾杰荣), Yixiao Gao(高一骁), Xiang Shen(沈祥), Yimin Chen(陈益敏), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2021, 30(3): 034210.
[8] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[9] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[10] Broadband and efficient second harmonic generation in LiNbO3-LiTaO3 composite ridge waveguides at telecom-band
Xin-Tong Zhang(张欣桐). Chin. Phys. B, 2021, 30(1): 014205.
[11] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[12] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[13] Microwave frequency transfer over a 112-km urban fiber link based on electronic phase compensation
Wen-Xiang Xue(薛文祥), Wen-Yu Zhao(赵文宇), Hong-Lei Quan(全洪雷), Cui-Chen Zhao(赵粹臣), Yan Xing(邢燕), Hai-Feng Jiang(姜海峰), Shou-Gang Zhang(张首刚). Chin. Phys. B, 2020, 29(6): 064209.
[14] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[15] Graphene's photonic and optoelectronic properties-A review
A J Wirth-Lima, P P Alves-Sousa, W Bezerra-Fraga. Chin. Phys. B, 2020, 29(3): 037801.
No Suggested Reading articles found!