PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma |
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山)† |
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China |
|
|
Abstract We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder. By averaging the physical quantities on the radial direction in some cases, we reduce this system to a simple one-dimensional model. It seems that the effects of the bounded geometry (the radius of the cylinder in this case) can be included in the damping coefficient. We notice that the amplitudes of both Korteweg-de Vries (KdV) solitary waves and dark envelope solitary waves decrease exponentially as time increases from the particle-in-cell (PIC) simulation. The dependence of damping coefficient on the cylinder radius and the viscosity coefficient is also obtained numerically and analytically. Both are in good agreement. By using a definition, we give a condition whether a solitary wave exists in a bounded plasma. Moreover, some of potential applications in laboratory experiments are suggested.
|
Received: 11 September 2020
Revised: 30 October 2020
Accepted manuscript online: 23 November 2020
|
PACS:
|
52.25.Dg
|
(Plasma kinetic equations)
|
|
52.35.Fp
|
(Electrostatic waves and oscillations (e.g., ion-acoustic waves))
|
|
52.35.Sb
|
(Solitons; BGK modes)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965019 and 11847142). |
Corresponding Authors:
†Corresponding author. E-mail: duanws@nwnu.edu.cn
|
Cite this article:
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山) Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma 2021 Chin. Phys. B 30 035201
|
1 Osborne A R and Burch T L 1980 Science 208 451 2 Stegeman G I and Segev M 1999 Science 286 1518 3 Li C Z, He J S and Porsezian K 2013 Chin. Phys. B 22 044208 4 Shukla N and Shukla P K 2007 Phys. Lett. A 367 120 5 Shukla P K, Yu M Y and Tsintsadze N L 1984 Phys. Fluids 27 327 6 Chen J H 2009 Chin. Phys. B 18 2121 7 Hou L J, Wang Y N and Miskovic Z L 2004 Phys. Rev. E 70 056406 8 Duan W S 2004 Chaos, Solitons and Fractals 21 319 9 Xie B S and Du S C 2006 Phys. Plasmas 13 074504 10 Xiao D L, Ma J X and Li Y F 2006 Phys. Plasmas 13 052308 11 Ghosh S and Bharuthram R 2011 Astrophys. Space Sci. 331 163 12 Mondal K K, Chowdhury A R and Paul S N 1998 Phys. Scr. 57 652 13 El-Taibany W F and Mamun A A 2012 Phys. Rev. E 85 026406 14 Mannan A, Mamun A A and Shukla P K 2012 Phys. Scr. 85 065501 15 Goldreich P and Julian W H 1969 Astrophys. J. 157 869 16 Michel F C 1982 Rev. Mod. Phys. 54 1 17 Rizzato F B 1988 J. Plasma Phys. 40 289 18 Berezhiani V I, El-Ashry M Y and Mofiz U A 1994 Phys. Rev. E 50 448 19 Popel S I, Vladimirov S V and Shukla P K 1995 Phys. Plasmas 2 716 20 Chatterjee P, Ghosh U N, Roy K, Muniandy S V, Wong C S and Sahu B 2010 Phys. Plasmas 17 122314 21 Sayal V K and Sharma S R 1990 Phys. Scr. 42 475 22 Hussain S and Mahmood S 2011 Phys. Plasmas 18 052308 23 Bhadra D and Varma R K 1964 Phys. Fluids 7 1091 24 Ono M and Kulsrud R M 1975 Phys. Fluids 18 1287 25 Randall C J 1982 Phys. Fluids 25 2231 26 Kulsrud R M and Shen C S 1966 Phys. Fluids 9 177 27 Jasperse J R and Basu B 1987 Phys. Rev. Lett. 58 1423 28 Basu B and Jasperse J R 1988 Phys. Rev. A 38 3785 29 Dum C T 1975 Phys. Rev. Lett. 35 947 30 Bell A R 1983 Phys. Fluids 26 279 31 Liu T L, Wang Y L and Lu Y Z 2015 Chin. Phys. B 24 025202 32 Sarma R, Misra A P and Adhikary N C 2018 Chin. Phys. B 27 105207 33 Washimi H and Taniuti T 1966 Phys. Rev. Lett. 17 996 34 Sakanaka P H 1972 Phys. Fluids 15 304 35 Han J N, Luo J H, Sun G H, Liu Z L and Li S Y 2011 Chin. Phys. B 20 025202 36 Xue J K, Duan W S and Lang H 2002 Chin. Phys. B 11 1184 37 Zhang J, Qi X, Zhang H and Duan W S 2016 Chin. Phys. Lett. 33 065202 38 Hasan M M, Hossen M A, Rafat A and Mamum A A 2016 Chin. Phys. B 25 105203 39 Sarma R, Misra A P and Adhikary N C 2018 Chin. Phys. B 27 105207 40 Ma Y R, Li L J and Duan W S 2019 Chin. Phys. B 28 025201 41 Niknam A R, Mostafavi P S, Komaizi D and Salahshoor M 2012 Phys. Plasmas 19 082119 42 Kakad B, Kakad A and Omura Y 2014 J. Geophys. Res. Space Phys. 119 5589 43 Qi X, Xu Y X, Duan W S, Zhang L Y and Yang L 2014 Phys. Plasmas 21 082118 44 Sharma S, Sengupta S and Sen A 2015 Phys. Plasmas 22 022115 45 Yang X, Liu C B, Yang Y, Shi Y R, Xu Y X, Gao D N, Duan W S and Yang L 2013 Phys. Rev. E 87 063101 46 Li G, Yang X and Duan W S 2014 Phys. Plasmas 21 022118 47 Manheimer W M 1969 Phys. Fluids 12 2426 48 Rasmussen J J 1978 Plasma Phys. 20 997 49 Hershkowitz N and Romesser T 1974 Phys. Rev. Lett. 32 581 50 Ghosh S, Sarkar S, Khan M and Gupta M R 2000 Phys. Plasmas 7 3594 51 Ghosh S, Chaudhuri T K, Sarkar S, Khan M and Gupta M R 2002 Phys. Rev. E 65 037401 52 Ghosh B and Das K P 1988 J. Plasma Phys. 40 545 53 Mondal K K, Roychowdhury A and Paul S N 2001 Phys. Rev. E 65 016404 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|