Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 035201    DOI: 10.1088/1674-1056/abccb1

Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma

Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山)†
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder. By averaging the physical quantities on the radial direction in some cases, we reduce this system to a simple one-dimensional model. It seems that the effects of the bounded geometry (the radius of the cylinder in this case) can be included in the damping coefficient. We notice that the amplitudes of both Korteweg-de Vries (KdV) solitary waves and dark envelope solitary waves decrease exponentially as time increases from the particle-in-cell (PIC) simulation. The dependence of damping coefficient on the cylinder radius and the viscosity coefficient is also obtained numerically and analytically. Both are in good agreement. By using a definition, we give a condition whether a solitary wave exists in a bounded plasma. Moreover, some of potential applications in laboratory experiments are suggested.
Keywords:  ion-acoustic solitary waves      particle-in-cell simulation      bounded plasmas  
Received:  11 September 2020      Revised:  30 October 2020      Accepted manuscript online:  23 November 2020
PACS:  52.25.Dg (Plasma kinetic equations)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.35.Sb (Solitons; BGK modes)  
  52.65.Rr (Particle-in-cell method)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965019 and 11847142).
Corresponding Authors:  Corresponding author. E-mail:   

Cite this article: 

Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山) Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma 2021 Chin. Phys. B 30 035201

1 Osborne A R and Burch T L 1980 Science 208 451
2 Stegeman G I and Segev M 1999 Science 286 1518
3 Li C Z, He J S and Porsezian K 2013 Chin. Phys. B 22 044208
4 Shukla N and Shukla P K 2007 Phys. Lett. A 367 120
5 Shukla P K, Yu M Y and Tsintsadze N L 1984 Phys. Fluids 27 327
6 Chen J H 2009 Chin. Phys. B 18 2121
7 Hou L J, Wang Y N and Miskovic Z L 2004 Phys. Rev. E 70 056406
8 Duan W S 2004 Chaos, Solitons and Fractals 21 319
9 Xie B S and Du S C 2006 Phys. Plasmas 13 074504
10 Xiao D L, Ma J X and Li Y F 2006 Phys. Plasmas 13 052308
11 Ghosh S and Bharuthram R 2011 Astrophys. Space Sci. 331 163
12 Mondal K K, Chowdhury A R and Paul S N 1998 Phys. Scr. 57 652
13 El-Taibany W F and Mamun A A 2012 Phys. Rev. E 85 026406
14 Mannan A, Mamun A A and Shukla P K 2012 Phys. Scr. 85 065501
15 Goldreich P and Julian W H 1969 Astrophys. J. 157 869
16 Michel F C 1982 Rev. Mod. Phys. 54 1
17 Rizzato F B 1988 J. Plasma Phys. 40 289
18 Berezhiani V I, El-Ashry M Y and Mofiz U A 1994 Phys. Rev. E 50 448
19 Popel S I, Vladimirov S V and Shukla P K 1995 Phys. Plasmas 2 716
20 Chatterjee P, Ghosh U N, Roy K, Muniandy S V, Wong C S and Sahu B 2010 Phys. Plasmas 17 122314
21 Sayal V K and Sharma S R 1990 Phys. Scr. 42 475
22 Hussain S and Mahmood S 2011 Phys. Plasmas 18 052308
23 Bhadra D and Varma R K 1964 Phys. Fluids 7 1091
24 Ono M and Kulsrud R M 1975 Phys. Fluids 18 1287
25 Randall C J 1982 Phys. Fluids 25 2231
26 Kulsrud R M and Shen C S 1966 Phys. Fluids 9 177
27 Jasperse J R and Basu B 1987 Phys. Rev. Lett. 58 1423
28 Basu B and Jasperse J R 1988 Phys. Rev. A 38 3785
29 Dum C T 1975 Phys. Rev. Lett. 35 947
30 Bell A R 1983 Phys. Fluids 26 279
31 Liu T L, Wang Y L and Lu Y Z 2015 Chin. Phys. B 24 025202
32 Sarma R, Misra A P and Adhikary N C 2018 Chin. Phys. B 27 105207
33 Washimi H and Taniuti T 1966 Phys. Rev. Lett. 17 996
34 Sakanaka P H 1972 Phys. Fluids 15 304
35 Han J N, Luo J H, Sun G H, Liu Z L and Li S Y 2011 Chin. Phys. B 20 025202
36 Xue J K, Duan W S and Lang H 2002 Chin. Phys. B 11 1184
37 Zhang J, Qi X, Zhang H and Duan W S 2016 Chin. Phys. Lett. 33 065202
38 Hasan M M, Hossen M A, Rafat A and Mamum A A 2016 Chin. Phys. B 25 105203
39 Sarma R, Misra A P and Adhikary N C 2018 Chin. Phys. B 27 105207
40 Ma Y R, Li L J and Duan W S 2019 Chin. Phys. B 28 025201
41 Niknam A R, Mostafavi P S, Komaizi D and Salahshoor M 2012 Phys. Plasmas 19 082119
42 Kakad B, Kakad A and Omura Y 2014 J. Geophys. Res. Space Phys. 119 5589
43 Qi X, Xu Y X, Duan W S, Zhang L Y and Yang L 2014 Phys. Plasmas 21 082118
44 Sharma S, Sengupta S and Sen A 2015 Phys. Plasmas 22 022115
45 Yang X, Liu C B, Yang Y, Shi Y R, Xu Y X, Gao D N, Duan W S and Yang L 2013 Phys. Rev. E 87 063101
46 Li G, Yang X and Duan W S 2014 Phys. Plasmas 21 022118
47 Manheimer W M 1969 Phys. Fluids 12 2426
48 Rasmussen J J 1978 Plasma Phys. 20 997
49 Hershkowitz N and Romesser T 1974 Phys. Rev. Lett. 32 581
50 Ghosh S, Sarkar S, Khan M and Gupta M R 2000 Phys. Plasmas 7 3594
51 Ghosh S, Chaudhuri T K, Sarkar S, Khan M and Gupta M R 2002 Phys. Rev. E 65 037401
52 Ghosh B and Das K P 1988 J. Plasma Phys. 40 545
53 Mondal K K, Roychowdhury A and Paul S N 2001 Phys. Rev. E 65 016404
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[3] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[4] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[5] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[6] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[7] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[8] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[9] Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge
Sun Ji-Zhong(孙继忠), Li Xian-Tao(李现涛), Bai Jing(白净), and Wang De-Zhen(王德真) . Chin. Phys. B, 2012, 21(5): 055205.
[10] Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization
Luo Mu-Hua(罗牧华) and Zhang Qiu-Ju(张秋菊). Chin. Phys. B, 2011, 20(8): 085201.
[11] Particle-in-cell investigation on the resonant absorption of a plasma surface wave
Lan Chao-Hui(蓝朝晖) and Hu Xi-Wei(胡希伟) . Chin. Phys. B, 2011, 20(10): 105202.
[12] Dispersion characteristics of two-dimensional unmagnetized dielectric plasma photonic crystal
Qi Li-Mei(亓丽梅), Yang Zi-Qiang(杨梓强), Lan Feng(兰峰), Gao Xi(高喜), and Li Da-Zhi(李大治). Chin. Phys. B, 2010, 19(3): 034210.
[13] Comparative research on three types of coaxial slow wave structures
Xiao Ren-Zhen(肖仁珍), Liu Guo-Zhi(刘国治), and Chen Chang-Hua(陈昌华). Chin. Phys. B, 2008, 17(10): 3807-3811.
No Suggested Reading articles found!