Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 075202    DOI: 10.1088/1674-1056/ab8da0
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations

Kai Huang(黄楷)1,2, Quan-Ming Lu(陆全明)1,2, Rong-Sheng Wang(王荣生)1,2, Shui Wang(王水)1,2
1 Key Laboratory of Geospace Environment, Chinese Academy of Sciences, Department of Geophysics and Planetary Science, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Comparative Planetology, Hefei 230026, China
Abstract  Reconnection electric field is a key element of magnetic reconnection. It quantifies the change of magnetic topology and the dissipation of magnetic energy. In this work, two-dimensional (2D) particle-in-cell (PIC) simulations are performed to study the growth of the reconnection electric field in the electron diffusion region (EDR) during magnetic reconnection with a guide field. At first, a seed electric field is produced due to the excitation of the tearing-mode instability. Then, the reconnection electric field in the EDR, which is dominated by the electron pressure tensor term, suffers a spontaneous growth stage and grows exponentially until it saturates. A theoretical model is also proposed to explain such a kind of growth. The reconnection electric field in the EDR is found to be directly proportional to the electron outflow speed. The time derivative of electron outflow speed is proportional to the reconnection electric field in the EDR because the outflow is formed after the inflow electrons are accelerated by the reconnection electric field in the EDR and then directed away along the outflow direction. This kind of reinforcing process at last leads to the exponential growth of the reconnection electric field in the EDR.
Keywords:  magnetic reconnection      reconnection electric field      electron diffusion region      particle-in-cell simulation  
Received:  11 February 2020      Revised:  21 April 2020      Accepted manuscript online: 
PACS:  52.35.Vd (Magnetic reconnection)  
  52.65.Rr (Particle-in-cell method)  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
  94.05.-a (Space plasma physics)  
Fund: Project supported by the National Natural Science of China (Grant Nos. 41527804 and 41774169), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB 41000000), and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant No. QYZDJ-SSW-DQC010).
Corresponding Authors:  Quan-Ming Lu     E-mail:  qmlu@ustc.edu.cn

Cite this article: 

Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水) Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations 2020 Chin. Phys. B 29 075202

[1] Shibata K and Magara T 2011 Living Rev. Sol. Phys. 8 1
[2] Chen P F 2011 Living Rev. Sol. Phys. 8 1
[3] Sergeev V A, Angelopoulos V and Nakamura R 2012 Geophys. Res. Lett. 39 L05101
[4] Pu Z Y, Chu X N, Cao X, Mishin V, Angelopoulos V, Wang J, Wei Y, Zong Q G, Fu S Y, Xie L, Glassmeier K H, Frey H, Russell C T, Liu J, McFadden J, Larson D, Mende S, Mann I, Sibeck D, Sapronova L A, Tolochko M V, Saifudinova T I, Yao Z H, Wang X G, Xiao C J, Zhou X Z, Reme H and Lucek E 2010 J. Geophys. Res.-Space Phys. 115 A02212
[5] Fu H S, Cao J B, Cao D, Wang Z, Vaivads A, Khotyaintsev Y V, Burch J L and Huang S Y 2019 Geophys. Res. Lett. 46 48
[6] Angelopoulos V, McFadden J P, Larson D, Carlson C W, Mende S B, Frey H, Phan T, Sibeck D G, Glassmeier K H, Auster U, Donovan E, Mann I R, Rae I J, Russell C T, Runov A, Zhou X Z and Kepko L 2008 Science 321 931
[7] Le A, Daughton W, Chen L J and Egedal J 2017 Geophys. Res. Lett. 44 2096
[8] Nakamura T K M, Eriksson S, Hasegawa H, Zenitani S, Li W Y, Genestreti K J, Nakamura R and Daughton W 2017 J. Geophys. Res.-Space Phys. 122 11505
[9] Zelenyi L and Artemyev A 2013 Space Sci. Rev. 178 441
[10] Yu Q, Gunter S and Lackner K 2014 Nucl. Fusion 54 072005
[11] Birn J, Drake J F, Shay M A, Rogers B N, Denton R E, Hesse M, Kuznetsova M, Ma Z W, Bhattacharjee A, Otto A and Pritchett P L 2001 J. Geophys. Res.-Space Phys. 106 3715
[12] Zweibel E G and Yamada M 2009 Ann. Rev. Astron. Astrophys. 47 291
[13] Fu X R, Lu Q M and Wang S 2006 Phys. Plasmas 13 012309
[14] Hoshino M, Mukai T, Terasawa T and Shinohara I 2001 J. Geophys. Res.-Space Phys. 106 25979
[15] Huang C, Lu Q M and Wang S 2010 Phys. Plasmas 17 072306
[16] Lu Q M, Wang H Y, Huang K, Wang R S and Wang S 2018 Phys. Plasmas 25 072126
[17] Pritchett P L 2006 Geophys. Res. Lett. 33 L13104
[18] Cassak P A, Liu Y H and Shay M A 2017 J. Plasma Phys. 83 715830501
[19] Biskamp D, Sagdeev R Z and Schindler K 1970 Cosmic Electrodynamics 1 297-310
[20] Galeev A A, Coroniti F V and Ashourabdalla M 1978 Geophys. Res. Lett. 5 707
[21] Lu Q M, Lu S, Huang C, Wu M Y and Wang S 2013 Plasma Phys. Control. Fusion 55 085019
[22] Daughton W 2003 Phys. Plasmas 10 3103
[23] Scholer M, Sidorenko I, Jaroschek C H, Treumann R A and Zeiler A 2003 Phys. Plasmas 10 3521
[24] Che H, Drake J F, Swisdak M and Yoon P H 2009 Phys. Rev. Lett. 102 145004
[25] Drake J F, Swisdak M, Cattell C, Shay M A, Rogers B N and Zeiler A 2003 Science 299 873
[26] Shinohara I, Suzuki H, Fujimoto M and Hoshino M 2001 Phys. Rev. Lett. 87 095001
[27] Pritchett P L 2001 J. Geophys. Res.-Space Phys. 106 3783
[28] Litvinenko Y E 2009 Astrophys. J. 694 1464
[29] Hesse M 2006 Phys. Plasmas 13 122107
[30] Lapenta G, Markidis S, Divin A, Goldman M and Newman D 2010 Phys. Plasmas 17 082106
[31] Daughton W and Karimabadi H 2005 J. Geophys. Res.-Space Phys. 110 A03217
[32] Huang K, Lu Q M, Huang C, Dong Q L, Wang H Y, Fan F B, Sheng Z M, Wang S and Zhang J 2017 Phys. Plasmas 24 102101
[33] Ke Y G, Gao X L, Lu Q M and Wang S 2017 Phys. Plasmas 24 012108
[34] Lu S, Angelopoulos V and Fu H S 2016 J. Geophys. Res.-Space Phys. 121 9483
[35] Sang L L, Lu Q M, Wang R S, Huang K and Wang S 2018 Phys. Plasmas 25 062120
[36] Li Z S, Wang H Y and Gao X L 2019 Chin. Phys. B 28 075203
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[3] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[4] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[5] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[6] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[7] Formation of electron depletion layer and parallel electric field in the separatrix region of anti-parallel magnetic reconnection
Zisheng Li(李子圣), Huanyu Wang(王焕宇), Xinliang Gao(高新亮). Chin. Phys. B, 2019, 28(7): 075203.
[8] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[9] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[10] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[11] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[12] Effect of inner-surface roughness of conical target on laser absorption and fast electron generation
Wang Huan (王欢), Cao Li-Hua (曹莉华), Zhao Zong-Qing (赵宗清), Yu Ming-Yang (郁明阳), Gu Yu-Qiu (谷渝秋), He Xian-Tu (贺贤土). Chin. Phys. B, 2014, 23(5): 055202.
[13] Out-of-plane shear flow effects on fast magnetic reconnection in a two-dimensional hybrid simulation model
Wang Lin (王琳), Wang Xian-Qu (王先驱), Wang Xiao-Gang (王晓钢), Liu Yue (刘悦). Chin. Phys. B, 2014, 23(2): 025203.
[14] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[15] Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge
Sun Ji-Zhong(孙继忠), Li Xian-Tao(李现涛), Bai Jing(白净), and Wang De-Zhen(王德真) . Chin. Phys. B, 2012, 21(5): 055205.
No Suggested Reading articles found!