Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(6): 2130-2136    DOI: 10.1088/1674-1056/17/6/031
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Micro thermal shear stress sensor based on vacuum anodic bonding and bulk-micromachining

Yi Liang(易亮)a)b), Ou Yi(欧毅)a)†, Shi Sha-Li(石莎莉)a)‡, Ma Jin(马瑾)b), Chen Da-Peng(陈大鹏)a), and Ye Tian-Chun(叶甜春)a)
a  Silicon Device & Integrated Technology Department, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China; c School of Physics & Microelectronics, Shandong University, Jinan 250100, China
Abstract  This paper describes a micro thermal shear stress sensor with a cavity underneath, based on vacuum anodic bonding and bulk micromachined technology. A Ti/Pt alloy strip, 2$\mu $m$\times $100$\mu $m, is deposited on the top of a thin silicon nitride diaphragm and functioned as the thermal sensor element. By using vacuum anodic bonding and bulk-si anisotropic wet etching process instead of the sacrificial-layer technique, a cavity, functioned as the adiabatic vacuum chamber, 200$\mu $m$\times $200$\mu $m$^{ }\times $400$\mu $m, is placed between the silicon nitride diaphragm and glass (Corning 7740). This method totally avoid adhesion problem which is a major issue of the sacrificial-layer technique.
Keywords:  thermal micro shear stress sensor      vacuum anodic bonding      bulk-micromachined  
Received:  08 September 2007      Revised:  17 October 2007      Accepted manuscript online: 
PACS:  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  81.20.Wk (Machining, milling)  
  81.65.Cf (Surface cleaning, etching, patterning)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 60576053) and Technology Innovation of Chinese Academy of Sciences (Grant No CXJJ-176).

Cite this article: 

Yi Liang(易亮), Ou Yi(欧毅), Shi Sha-Li(石莎莉), Ma Jin(马瑾), Chen Da-Peng(陈大鹏), and Ye Tian-Chun(叶甜春) Micro thermal shear stress sensor based on vacuum anodic bonding and bulk-micromachining 2008 Chin. Phys. B 17 2130

[1] Effect of staggered array structure on the flow field of micro gas chromatographic column
Daohan Ge(葛道晗), Zhou Hu(胡州), Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(1): 010701.
[2] A novel low-loss four-bit bandpass filter using RF MEMS switches
Lulu Han(韩路路), Yu Wang(王宇), Qiannan Wu(吴倩楠), Shiyi Zhang(张世义), Shanshan Wang(王姗姗), and Mengwei Li(李孟委). Chin. Phys. B, 2022, 31(1): 018506.
[3] A novel multifunctional electronic calibration kit integrated by MEMS SPDT switches
Shan-Shan Wang(王姗姗), Qian-Nan Wu(吴倩楠), Yue-Sheng Gao(高跃升), Jian-Gang Yu(余建刚), Qian-Long Cao(曹钎龙), Lu-Lu Han(韩路路), and Meng-Wei Li(李孟委). Chin. Phys. B, 2021, 30(11): 118501.
[4] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[5] Atomic magnetometer with microfabricated vapor cells based on coherent population trapping
Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖). Chin. Phys. B, 2021, 30(3): 030701.
[6] Room temperature non-balanced electric bridge ethanol gas sensor based on a single ZnO microwire
Yun-Zheng Li(李昀铮), Qiu-Ju Feng(冯秋菊), Bo Shi(石博), Chong Gao(高冲), De-Yu Wang(王德煜), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(1): 018102.
[7] Opto-electromechanically induced transparency in a hybrid opto-electromechanical system
Hui Liu(刘慧), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2019, 28(10): 108502.
[8] Efficient molecular model for squeeze-film damping in rarefied air
Cun-Hao Lu(陆存豪), Pu Li(李普), Yu-Ming Fang(方玉明). Chin. Phys. B, 2019, 28(9): 098501.
[9] Optically manipulated nanomechanics of semiconductor nanowires
Chenzhi Song(宋晨之), Shize Yang(杨是赜), Xiaomin Li(李晓敏), Xiao Li(李晓), Ji Feng(冯济), Anlian Pan(潘安练), Wenlong Wang(王文龙), Zhi Xu(许智), Xuedong Bai(白雪冬). Chin. Phys. B, 2019, 28(5): 054204.
[10] Superconducting membrane mechanical oscillator based on vacuum-gap capacitor
Yong-Chao Li(李永超), Xin Dai(戴欣), Jun-Liang Jiang(江俊良), Jia-Zheng Pan(潘佳政), Xing-Yu Wei(魏兴雨), Ya-Peng Lu(卢亚鹏), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Guo-Zhu Sun(孙国柱), Pei-Heng Wu(吴培亨). Chin. Phys. B, 2018, 27(6): 060701.
[11] Magnetism and piezoelectricity of hexagonal boron nitride with triangular vacancy
Lu-Si Zhao(赵路丝), Chun-Ping Chen(陈春平), Lin-Lin Liu(刘林林), Hong-Xia Yu(于洪侠), Yi Chen(陈怡), Xiao-Chun Wang(王晓春). Chin. Phys. B, 2018, 27(1): 016301.
[12] Electrically controlled optical switch in the hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Hong-Yang Ma(马鸿洋), Shu-Mei Wang(王淑梅), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2017, 26(12): 128502.
[13] Design and characterization of a 3D encapsulation with silicon vias for radio frequency micro-electromechanical system resonator
Ji-Cong Zhao(赵继聪), Quan Yuan(袁泉), Feng-Xiang Wang(王凤祥), Xiao Kan(阚骁), Guo-Wei Han(韩国威), Ling Sun(孙玲), Hai-Yan Sun(孙海燕), Jin-Ling Yang(杨晋玲), Fu-Hua Yang(杨富华). Chin. Phys. B, 2017, 26(6): 060705.
[14] Excellent ethanol sensing properties based on Er2O3-Fe2O3 nanotubes
Liu Chang-Bai (刘唱白), He Ying (何滢), Wang Sheng-Lei (王圣蕾). Chin. Phys. B, 2015, 24(11): 118501.
[15] Excellent acetone sensing properties of porous ZnO
Liu Chang-Bai (刘唱白), Liu Xing-Yi (刘星熠), Wang Sheng-Lei (王圣蕾). Chin. Phys. B, 2015, 24(1): 018503.
No Suggested Reading articles found!