Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(1): 010701    DOI: 10.1088/1674-1056/ac0902
GENERAL Prev   Next  

Effect of staggered array structure on the flow field of micro gas chromatographic column

Daohan Ge(葛道晗)1, Zhou Hu(胡州)1, Liqiang Zhang(张立强)1,†, and Shining Zhu(祝世宁)2
1 Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang 212013, China;
2 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
Abstract  A new design of staggered array semi-packed micro gas chromatographic column was presented based on the micro electromechanical system (MEMS) technology. It was a sensor for gas sample analysis. The internal velocity fields of ten types of semi-packed micro gas chromatographic column were studied. The effects of array spacing and dislocation spacing on the flow field distribution were investigated. The results show that on the basis of ensuring the formation of virtual wall, with the increase of array spacing, the maximum velocity difference between the flow channels in the vertical direction decreases gradually, but the velocity difference in the flow channels a and b increases. When the inlet velocity was set to be 0.18 m/s, the maximum velocity difference in the channel of the staggered semi-packed micro gas chromatography column 3 (CSAC3) was 0.05610 m/s. The maximum velocity difference in the channel a was 0.09160 m/s. The maximum velocity difference in the channel b was 0.02401 m/s. CSAC3 had a more uniform velocity field distribution, which can effectively suppress the laminar flow effect during chromatographic separation, and had a smaller pressure distribution, which puts forward lower requirements for carrier gas system. The staggered array semi-packed micro gas chromatography column proposed in this paper can effectively improve the velocity field distribution and pressure distribution in the channel, and provide a theoretical basis for the design of the new micro gas chromatography column structure.
Keywords:  micro electromechanical system (MEMS)      micro gas chromatography  
Received:  09 March 2021      Revised:  04 June 2021      Accepted manuscript online:  08 June 2021
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  47.61.Fg (Flows in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS))  
  47.63.Jd (Microcirculation and flow through tissues)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180098), National Laboratory of Solid State Microstructures, Nanjing University (Grant Nos. M32045 and M33042).
Corresponding Authors:  Liqiang Zhang     E-mail:  zhanglq4158@ujs.edu.cn

Cite this article: 

Daohan Ge(葛道晗), Zhou Hu(胡州), Liqiang Zhang(张立强), and Shining Zhu(祝世宁) Effect of staggered array structure on the flow field of micro gas chromatographic column 2022 Chin. Phys. B 31 010701

[1] Zahoor R, Liu C, Anwar M R, Lin F Y, Hu A Q and Guo X 2020 Chin. Phys. B 29 028102
[2] Li Y J, Zhang M and Zhang H M 2020 Chin. Phys. B 29 090702
[3] Zhao B S, Qiang X Y, Qin Y and Hu M 2018 Acta Phys. Sin. 67 058101 (in Chinese)
[4] Han B Q, Wu G S, Huang H, Liu T H, Wang J H, Sun J H and Wang H R 2019 Surf. Coat. Technol. 363 322
[5] Zhou M L, Lee J, Zhu H B, Nidetz R, Kurabayashi K and Fan X D 2016 RSC Adv. 6 49416
[6] Garga A, Akbar M, Vejerano E, Narayanan S, Nazhandali L, Marr L C and Agah M 2015 Sensor Actuat B-Chem. 212 145
[7] Li Y, Du X S, Wang Y, Tai H L, Qiu D, Lin Q H and Jiang Y D 2014 Nanoscale Res. Lett. 9 224
[8] Bhushan A, Yemane D, Trudell D, Overton E B and Goettert J 2007 Microsyst Technol. 13 361
[9] Agah M and Wise K D 2007 J. Microelectromech S 16 853
[10] Narayanan S, Alfeeli B and Agah M 2010 IEEE Sensors 2504
[11] Zarejan-Jahromi M A, Ashraf-Khorassani M, Taylor L T and Agah M 2009 J. Microelectromech S 18 28
[12] Ali S, Ashraf-Khorassani M, Taylor L T and Agah M 2009 Sensor Actuat B-Chem. 141 309
[13] Li Y, Du X S, Wang Y, Tai H L, Qiu D, Lin Q H and Jiang Y D 2014 RSC Adv. 4 3742
[14] Sun J H, Cui D F, Chen X, Zhang L L, Cai H Y and Li H 2013 J. Chromatogr A 1291 122
[15] Wang M H, Wen J X, Yang P and Wang X Y 2016 J. Synthetic Crystals 45 2722
[16] Chen D, Zhao B Q and Zhang X 2015 Chin. Phys. Lett. 32 128502
[17] Alfeeli B, Narayanan S, McMillan M, Hirtenstein D, Rice G, Agah M and Ieee 2011 2011 IEEE Sensors (New York: IEEE) p. 1097
[18] Nishiyama S, Nakai T, Shuzo M, Delaunay J J and Yamada I 2009 Effect of Micropillar Density on Separation Efficiency of Semi-packed Micro Gas Chromatographic Columns (New York: IEEE) p. 1937
[19] Luo F, Zhao B, Feng F, Hou L, You W B, Xu P C, Zhou H M and Li X X 2018 Talanta 188 546
[20] Yuan H, Du X S, Li Y and Jiang Y D 6th IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (New York: IEEE) p. 283
[21] Chan R and Agah M 2019 J. Microelectromech. S. 28 114
[22] Yang X L, Zhao B, Feng F, Zhou H M, Yang H and Li X X 2019 Chin. J. Anal. Chem. 47 832
[23] Tian B W, Zhao B, Feng F, Luo F, Zhou H M, Ge X H, Wu Y H and Li X X 2018 J. Chromatogr. A 1565 130
[24] Tian B W, Feng F, Zhao B, Luo F, Yang X L, Zhou H M and Li X X 2018 Chin. J. Anal. Chem. 46 1363
[25] Alfeeli B, Narayanan S, Moodie D, Zellner P, McMillan M, Hirtenstein D, Rice G and Agah M 2013 IEEE Sens. J. 13 4312
[26] Radadia A D, Salehi-Khojin A, Masel R I and Shannon M A 2010 Sensor Actuat. B-Chem. 150 456
[27] Felinger A 2008 J. Chromatogr. A 1184 20
[28] Poppe H 2002 J. Chromatogr. A 948 3
[29] Carmo B S and Meneghini J R 2006 J. Fluids Struct. 22 979
[30] Kondo N and Matsukuma D 2005 Int. J. Comput. Fluid Dyn. 19 277
[1] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[4] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[5] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[6] A single dual-mode gas sensor for early safety warning of Li-ion batteries: Micro-scale Li dendrite and electrolyte leakage
Wenjun Yan(闫文君), Zhishen Jin(金志燊), Zhengyang Lin(林政扬), Shiyu Zhou(周诗瑜), Yonghai Du(杜永海), Yulong Chen(陈宇龙), and Houpan Zhou(周后盘). Chin. Phys. B, 2022, 31(11): 110704.
[7] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[8] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[9] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[10] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[13] Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明). Chin. Phys. B, 2022, 31(5): 050602.
[14] Finite element simulation of Love wave sensor for the detection of volatile organic gases
Yan Wang(王艳), Su-Peng Liang(梁苏鹏), Shu-Lin Shang(商树林),Yong-Bing Xiao(肖勇兵), and Yu-Xin Yuan(袁宇鑫). Chin. Phys. B, 2022, 31(3): 030701.
[15] Tunable and highly sensitive temperature sensor based on graphene photonic crystal fiber
Xu Cheng(程旭), Xu Zhou(周旭), Chen Huang(黄琛), Can Liu(刘灿), Chaojie Ma(马超杰), Hao Hong(洪浩), Wentao Yu(于文韬), Kaihui Liu(刘开辉), and Zhongfan Liu(刘忠范). Chin. Phys. B, 2021, 30(11): 118103.
No Suggested Reading articles found!