Please wait a minute...
Chin. Phys. B, 2008, Vol. 17(6): 2137-2142    DOI: 10.1088/1674-1056/17/6/032
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

The entanglement of two dipole--dipole coupled atoms interacting with a thermal field via a two-photon process

Liao Xiang-Ping(廖湘萍)a)b)c), Fang Mao-Fa(方卯发)a), Cai Jian-Wu(蔡建武)a)b)c), and Zheng Xiao-Juan(郑小娟)a)
a Department of Physics, Hunan Normal University, Changsha 410081, China; b Department of Physics and Electronics, Zhuzhou Teacher' College, ZhuZhou 412007, Chinac Department of Physics, Hunan Industrial University, Zhuzhou 412000, China
Abstract  This paper studies entanglement between two dipole--dipole coupled atoms interacting with a thermal field via a two-photon process. It shows that the entanglement is dependent on the mean photon number of the thermal field and the dipole--dipole interaction. The results also show that the atom--atom entanglement through the two-photon process is larger than that through the one-photon process and a remarkable amount of entanglement between the atoms still remains at certain times even for a very highly noisy thermal field.
Keywords:  entanglement      two-photon process      dipole--dipole interaction      thermal field  
Received:  15 July 2007      Revised:  30 December 2007      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  32.80.Wr (Other multiphoton processes)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No 10374025), Hunan Provincial Natural Science Foundation (Grant Nos 06JJ4003 and 06JJ2014) and the Young Scientific Research Foundation of Hunan Provincial Education Department

Cite this article: 

Liao Xiang-Ping(廖湘萍), Fang Mao-Fa(方卯发), Cai Jian-Wu(蔡建武), and Zheng Xiao-Juan(郑小娟) The entanglement of two dipole--dipole coupled atoms interacting with a thermal field via a two-photon process 2008 Chin. Phys. B 17 2137

[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!