Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060701    DOI: 10.1088/1674-1056/27/6/060701
GENERAL Prev   Next  

Superconducting membrane mechanical oscillator based on vacuum-gap capacitor

Yong-Chao Li(李永超)1,2, Xin Dai(戴欣)1,2, Jun-Liang Jiang(江俊良)1,2, Jia-Zheng Pan(潘佳政)1,2, Xing-Yu Wei(魏兴雨)1,2, Ya-Peng Lu(卢亚鹏)1,2, Sheng Lu(卢盛)1,2, Xue-Cou Tu(涂学凑)1,2, Guo-Zhu Sun(孙国柱)1,2, Pei-Heng Wu(吴培亨)1,2
1 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

Using the diluted S1813 UV photoresist as a sacrificial layer, we successfully fabricate a superconducting suspended parallel-plate capacitor, in which the top layer of aluminum film acts as a membrane mechanical resonator. Together with a superconducting octagonal spiral inductor, this parallel-plate capacitor constitutes a superconducting microwave resonator. At mK temperature, the transmission characteristic and spectrum of the microwave resonator are measured. Sideband frequencies caused by the vibration of the membrane mechanical resonator are clearly demonstrated. By down-converting with a mixer, the dependence of fundamental frequency and its harmonics on the input microwave power are clearly demonstrated, which is consistent with the numerical simulation.

Keywords:  superconducting membrane mechanical oscillator      vacuum-gap capacitor  
Received:  16 January 2018      Revised:  29 March 2018      Accepted manuscript online: 
PACS:  07.10.Cm (Micromechanical devices and systems)  
  81.07.Oj (Nanoelectromechanical systems (NEMS))  
  85.25.-j (Superconducting devices)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No.2016YFA0301801),the National Natural Science Foundation of China (Grant Nos.11474154 and 61521001),and the Priority Academic Development Program of Jiangsu Higher Education Institutions and Dengfeng Project B of Nanjing University,China.

Corresponding Authors:  Guo-Zhu Sun     E-mail:  gzsun@nju.edu.cn

Cite this article: 

Yong-Chao Li(李永超), Xin Dai(戴欣), Jun-Liang Jiang(江俊良), Jia-Zheng Pan(潘佳政), Xing-Yu Wei(魏兴雨), Ya-Peng Lu(卢亚鹏), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Guo-Zhu Sun(孙国柱), Pei-Heng Wu(吴培亨) Superconducting membrane mechanical oscillator based on vacuum-gap capacitor 2018 Chin. Phys. B 27 060701

[1] Xu Y H, Chen C Y, Deshpande V V, DiRenno F A, Gondarenko A, Heinz D B, Liu S M, Kim P and Hone J 2010 Appl. Phys. Lett. 97 243111
[2] Kozinsky I, Postma H W C, Bargatin I and Roukes M L 2006 Appl. Phys. Lett. 88 253101
[3] Bannon F D, Clark J R and Nguyen C T C 2000 IEEE Journal of Solid-State Circuits 35 512
[4] DeMartini B E, Rhoads J F, Turner K L, Shaw S W and Moehlis J 2007 Journal of Microelectromechanical Systems 16 310
[5] LaHaye M D, Buu O, Camarota B and Schwab K C 2004 Science 304 74
[6] Chan J, Mayer Alegre T P, Safavi-Naeini A H, Hill J T, Krause A, Groeblacher S, Aspelmeyer M and Painter O 2011 Nature 478 89
[7] Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A and Schwab K C 2015 Science 349 952
[8] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D and Simmonds R W 2011 Nature 471 204
[9] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W and Simmonds R W 2011 Nature 475 359
[10] Cicak K, Allman M S, Strong J A, Osborn K D and Simmonds R W 2009 IEEE Trans. Appl. Supercond. 19 948
[11] Cicak K, Li D, Strong J A, Allman M S, AltomareF, Sirois A J, Whittaker J D, Teufel J D, Simmonds R W 2010 Appl. Phys. Lett. 96 093502
[12] Pan J Z, Cao Z M, Fan Y Y, Zhou Y, Lan D, Liu Y H, Chen Z P, Li Y C, Cao C H, Xu W W, Kang L, Chen J, Yu H F, Yu Y, Sun G Z, Wu P H 2015 Chin. Phys. B 24 110301
[13] Rokhsari H, Kippenberg T J, Carmon T, Vahala K J 2005 Opt. Express 13 5293
[14] Sapmaz S, Blanter Y M, Gurevich L and Zant H S J 2003 Phys. Rev. B 67 235414
[15] Sazonova V, Yaish Y, Üstünel H, Roundy D, Arias T A and McEuen P L 2004 Nature 431 284
[16] Solanki H S, Sengupta S, Dhara S, Singh V, Patil S, Dhall R, Parpia J, Bhattacharya A and Deshmukh M M 2010 Phys. Rev. B 81 115459
[17] Regal C A, Teufel J D and Lehnert K W 2008 Nat. Phys. 4 555
[1] Effect of external electric field on the terahertz transmission characteristics of electrolyte solutions
Jia-Hui Wang(王佳慧), Guo-Yang Wang(王国阳), Xin Liu(刘欣), Si-Yu Shao(邵思雨), Hai-Yun Huang(黄海云), Chen-Xin Ding(丁晨鑫), Bo Su(苏波), and Cun-Lin Zhang(张存林). Chin. Phys. B, 2021, 30(11): 110204.
[2] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[3] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[4] Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving
Shi-Chao Wu(吴士超), Li-Guo Qin(秦立国), Jian Lu(鹿建), Zhong-Yang Wang(王中阳). Chin. Phys. B, 2019, 28(7): 074204.
[5] Design and characterization of a 3D encapsulation with silicon vias for radio frequency micro-electromechanical system resonator
Ji-Cong Zhao(赵继聪), Quan Yuan(袁泉), Feng-Xiang Wang(王凤祥), Xiao Kan(阚骁), Guo-Wei Han(韩国威), Ling Sun(孙玲), Hai-Yan Sun(孙海燕), Jin-Ling Yang(杨晋玲), Fu-Hua Yang(杨富华). Chin. Phys. B, 2017, 26(6): 060705.
[6] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[7] Silicon nanowire formed via shallow anisotropic etching Si-ash-trimming for specific DNA and electrochemical detection
Tijjani Adam, U. HAshim, Th S. Dhahi. Chin. Phys. B, 2015, 24(6): 068102.
[8] Simulation of fluid-structure interaction in a microchannel using the lattice Boltzmann method and size-dependent beam element on a graphics processing unit
Vahid Esfahanian, Esmaeil Dehdashti, Amir Mehdi Dehrouye-Semnani. Chin. Phys. B, 2014, 23(8): 084702.
[9] Review of chip-scale atomic clocks based on coherent population trapping
Wang Zhong (汪中). Chin. Phys. B, 2014, 23(3): 030601.
[10] Fast filtering algorithm based on vibration systems and neural information exchange and its application to micro motion robot
Gao Wa (高娃), Zha Fu-Sheng (查富生), Song Bao-Yu (宋宝玉), Li Man-Tian (李满天). Chin. Phys. B, 2014, 23(1): 010701.
[11] Review of cavity optomechanical cooling
Liu Yong-Chun (刘永椿), Hu Yu-Wen (胡毓文), Wong Chee Wei (黄智维), Xiao Yun-Feng (肖云峰). Chin. Phys. B, 2013, 22(11): 114213.
[12] A new magneto-cardiogram study using a vector model with a virtual heart and the boundary element method
Zhang Chen (张琛), Shou Guo-Fa (寿国法), Lu Hong (陆宏), Hua Ning (华宁), Tang Xue-Zheng (唐雪正), Xia Ling (夏灵), Ma Ping (马平), Tang Fa-Kuan (唐发宽). Chin. Phys. B, 2013, 22(9): 090701.
[13] Improvement of fabrication and characterization methods for micromechanical disk resonators
Zhao Hui (赵晖), Luo Wei (骆伟), Zheng Hai-Yang (郑海洋), Yang Jin-Ling (杨晋玲), Yang Fu-Hua (杨富华). Chin. Phys. B, 2012, 21(10): 100702.
[14] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan(苏娟), Deng Ke(邓科), Guo Deng-Zhu(郭等柱), Wang Zhong(汪中), Chen Jing(陈兢), Zhang Geng-Min(张耿民), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2010, 19(11): 110701.
[15] A novel method for sacrificial layer release in MEMS devices fabrication
Shi Sha-Li (石莎莉), Chen Da-Peng (陈大鹏), Jing Yu-Peng (景玉鹏), Ou Yi (欧毅), Ye Tian-Chun (叶甜春), Xu Qiu-Xia (徐秋霞). Chin. Phys. B, 2010, 19(7): 076802.
No Suggested Reading articles found!