Efficient molecular model for squeeze-film damping in rarefied air
Cun-Hao Lu(陆存豪)1, Pu Li(李普)1, Yu-Ming Fang(方玉明)2
1 School of Mechanical Engineering, Southeast University, Nanjing 211100, China;
2 College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 211100, China
Based on the energy transfer model (ETM) proposed by Bao et al. and the Monte Carlo (MC) model proposed by Hutcherson and Ye, this paper proposes an efficient molecular model (MC-S) for squeeze-film damping (SQFD) in rarefied air by releasing the assumption of constant molecular velocity in the gap. Compared with the experiment data, the MC-S model is more efficient than the MC model and more accurate than ETM. Besides, by using the MC-S model, the feasibility of the empirical model proposed by Sumali for SQFD of different plate sizes is discussed. It is proved that, for various plate sizes, the accuracy of the empirical model is relatively high. At last, the SQFD of various vibration frequencies is discussed, and it shows that, for low vibration frequency, the MC-S model is reduced to ETM.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.