CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Magnetism and piezoelectricity of hexagonal boron nitride with triangular vacancy |
Lu-Si Zhao(赵路丝)1,2, Chun-Ping Chen(陈春平)1,2, Lin-Lin Liu(刘林林)1,2, Hong-Xia Yu(于洪侠)1,2, Yi Chen(陈怡)1,2, Xiao-Chun Wang(王晓春)1,2 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University), Changchun 130012, China |
|
|
Abstract First-principle calculations reveal that the configuration system of hexagonal boron nitride (h-BN) monolayer with triangular vacancy can induce obvious magnetism, contrary to that of the nonmagnetic pristine boron nitride monolayer. Interestingly, the h-BN with boron atom vacancy (VB-BN) displays metallic behavior with a total magnetic moment being 0.46μB per cell, while the h-BN with nitrogen atom vacancy (VN-BN) presents a half-metallic characteristic with a total magnetic moment being 1.0μB per cell. Remarkably, piezoelectric stress coefficient e11 of the VN-BN is about 1.5 times larger than that of pristine h-BN. Furthermore, piezoelectric strain coefficient d11 (12.42 pm/V) of the VN-BN is 20 times larger than that of pristine h-BN and also one order of magnitude larger than the value for the h-MoS2 monolayer, which is mainly due to the spin-down electronic state in the VN-BN system. Our study demonstrates that the nitrogen atom vacancies can be an efficient route to tailoring the magnetic and piezoelectric properties of h-BN monolayer, which have promising performances for potential applications in nano-electromechanical systems (NEMS) and nanoscale electronics devices.
|
Received: 12 October 2017
Revised: 16 November 2017
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
77.65.Ly
|
(Strain-induced piezoelectric fields)
|
|
85.85.+j
|
(Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11474123) and the Natural Science Foundation of Jilin Province, China (Grant No. 20170101154JC). |
Corresponding Authors:
Xiao-Chun Wang
E-mail: wangxiaochun@jlu.edu.cn
|
Cite this article:
Lu-Si Zhao(赵路丝), Chun-Ping Chen(陈春平), Lin-Lin Liu(刘林林), Hong-Xia Yu(于洪侠), Yi Chen(陈怡), Xiao-Chun Wang(王晓春) Magnetism and piezoelectricity of hexagonal boron nitride with triangular vacancy 2018 Chin. Phys. B 27 016301
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
|
[3] |
Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S and Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451
|
[4] |
Degheidy A R and Elkenany E B 2017 Chin. Phys. B 26 086103
|
[5] |
Han W Q, Wu L, Zhu Y, Watanabe K and Taniguchi T 2008 Appl. Phys. Lett. 93 223103
|
[6] |
Nag A, Raidongia K, Hembram K P, Datta R, Waghmare U V and Rao C 2010 ACS Nano 4 1539
|
[7] |
Zhi C, Bando Y, Tang C, Kuwahara H and Golberg D 2009 Adv. Mater. 21 2889
|
[8] |
Jasuja K 2011 Designing Nanoscale Constructs from Atomic Thin Sheets of Graphene, Boron Nitride and Gold Nanoparticles for Advanced Material Applications (Kansas State University)
|
[9] |
Zhao L S, Wang Y, Chen C P, Liu L L, Yu H X, Zhang Y, Chen Y and Wang X C 2017 Physica E 91 82
|
[10] |
Liu L L, Chen C P, Zhao L S, Wang Y and Wang X C 2017 Carbon 115 773
|
[11] |
Chen X, Xu L, Liu L L, Zhao L S, Chen C P, Zhang Y and Wang X C 2017 Appl. Surf. Sci. 396 1020
|
[12] |
Jin C, Lin F, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 195505
|
[13] |
Azevedo S, Kaschny J R, de Castilho C M C and de Brito Mota F 2009 The European Physical Journal B 67 507
|
[14] |
Azevedo S, Kaschny J R, de Castilho C M and de Brito Mota F 2007 Nanotechnology 18 495707
|
[15] |
Lin Y, Williams T V, Cao W, Elsayed-Ali H E and Connell J W 2010 The Journal of Physical Chemistry C 114 17434
|
[16] |
Noorizadeh S and Shakerzadeh E 2012 Computational Materials Science 56 122
|
[17] |
Lvova N and Ananina O Y 2016 Comput. Mater. Sci. 115 11
|
[18] |
Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
|
[19] |
Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z and Guo W 2016 Small 12 2942
|
[20] |
Wang Y and Ding Y 2014 J. Phys.: Condens. Matt. 26 43
|
[21] |
Si M S and Xue D S 2007 Phys. Rev. B 75 193409
|
[22] |
Ekinci K and Roukes M 2005 Rev. Sci. Instrum 76 061101
|
[23] |
Huang X M H, Zorman C A, Mehregany M and Roukes M L 2003 Nature 421 496
|
[24] |
Sai N and Mele E 2003 Phys. Rev. B 68 241405
|
[25] |
Reed E J 2015 Nat. Nanotechnology 10 106
|
[26] |
Duerloo K A N, Ong M T and Reed E J 2012 The Journal of Physical Chemistry Letters 3 2871
|
[27] |
Michel K and Verberck B 2009 Phys. Rev. B 80 224301
|
[28] |
Li W and Li J 2015 Nano Research 8 3796
|
[29] |
Wang J L and Hu W D 2017 Chin. Phys. B 26 037106
|
[30] |
Ding Y and Wang Y 2016 J. Mater. Chem. C 4 1517
|
[31] |
Noor-A-Alam M, Kim H J and Shin Y H 2014 Phys. Chem. Chem. Phys. 16 6575
|
[32] |
Zelisko M, Hanlumyuang Y, Yang S, Liu Y, Lei C, Li J, Ajayan P M and Sharma P 2014 Nat. Commun. 5 4284
|
[33] |
Yang J, Kim D, Hong J and Qian X 2010 Surf. Sci. 604 1603
|
[34] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[35] |
Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
|
[36] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[37] |
Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
|
[38] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[39] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[40] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[41] |
Wu X, Vanderbilt D and Hamann D 2005 Phys. Rev. B 72 035105
|
[42] |
Blonsky M N, Zhuang H L, Singh A K and Hennig R G 2015 ACS Nano 9 9885
|
[43] |
Zhu H Y, Wang Y, Xiao J, Liu M, Xiong S M, Wong Z J, Ye Z L, Ye Y, Yin X B and Zhang X 2015 Nat. Nanotechnol. 10 151
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|