Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 016301    DOI: 10.1088/1674-1056/27/1/016301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Magnetism and piezoelectricity of hexagonal boron nitride with triangular vacancy

Lu-Si Zhao(赵路丝)1,2, Chun-Ping Chen(陈春平)1,2, Lin-Lin Liu(刘林林)1,2, Hong-Xia Yu(于洪侠)1,2, Yi Chen(陈怡)1,2, Xiao-Chun Wang(王晓春)1,2
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy(Jilin University), Changchun 130012, China
Abstract  

First-principle calculations reveal that the configuration system of hexagonal boron nitride (h-BN) monolayer with triangular vacancy can induce obvious magnetism, contrary to that of the nonmagnetic pristine boron nitride monolayer. Interestingly, the h-BN with boron atom vacancy (VB-BN) displays metallic behavior with a total magnetic moment being 0.46μB per cell, while the h-BN with nitrogen atom vacancy (VN-BN) presents a half-metallic characteristic with a total magnetic moment being 1.0μB per cell. Remarkably, piezoelectric stress coefficient e11 of the VN-BN is about 1.5 times larger than that of pristine h-BN. Furthermore, piezoelectric strain coefficient d11 (12.42 pm/V) of the VN-BN is 20 times larger than that of pristine h-BN and also one order of magnitude larger than the value for the h-MoS2 monolayer, which is mainly due to the spin-down electronic state in the VN-BN system. Our study demonstrates that the nitrogen atom vacancies can be an efficient route to tailoring the magnetic and piezoelectric properties of h-BN monolayer, which have promising performances for potential applications in nano-electromechanical systems (NEMS) and nanoscale electronics devices.

Keywords:  first-principle      magnetism      piezoelectric      nano-electromechanical systems  
Received:  12 October 2017      Revised:  16 November 2017      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  77.65.Ly (Strain-induced piezoelectric fields)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11474123) and the Natural Science Foundation of Jilin Province, China (Grant No. 20170101154JC).

Corresponding Authors:  Xiao-Chun Wang     E-mail:  wangxiaochun@jlu.edu.cn

Cite this article: 

Lu-Si Zhao(赵路丝), Chun-Ping Chen(陈春平), Lin-Lin Liu(刘林林), Hong-Xia Yu(于洪侠), Yi Chen(陈怡), Xiao-Chun Wang(王晓春) Magnetism and piezoelectricity of hexagonal boron nitride with triangular vacancy 2018 Chin. Phys. B 27 016301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Watanabe K, Taniguchi T and Kanda H 2004 Nat. Mater. 3 404
[3] Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S and Geim A 2005 Proc. Natl. Acad. Sci. USA 102 10451
[4] Degheidy A R and Elkenany E B 2017 Chin. Phys. B 26 086103
[5] Han W Q, Wu L, Zhu Y, Watanabe K and Taniguchi T 2008 Appl. Phys. Lett. 93 223103
[6] Nag A, Raidongia K, Hembram K P, Datta R, Waghmare U V and Rao C 2010 ACS Nano 4 1539
[7] Zhi C, Bando Y, Tang C, Kuwahara H and Golberg D 2009 Adv. Mater. 21 2889
[8] Jasuja K 2011 Designing Nanoscale Constructs from Atomic Thin Sheets of Graphene, Boron Nitride and Gold Nanoparticles for Advanced Material Applications (Kansas State University)
[9] Zhao L S, Wang Y, Chen C P, Liu L L, Yu H X, Zhang Y, Chen Y and Wang X C 2017 Physica E 91 82
[10] Liu L L, Chen C P, Zhao L S, Wang Y and Wang X C 2017 Carbon 115 773
[11] Chen X, Xu L, Liu L L, Zhao L S, Chen C P, Zhang Y and Wang X C 2017 Appl. Surf. Sci. 396 1020
[12] Jin C, Lin F, Suenaga K and Iijima S 2009 Phys. Rev. Lett. 102 195505
[13] Azevedo S, Kaschny J R, de Castilho C M C and de Brito Mota F 2009 The European Physical Journal B 67 507
[14] Azevedo S, Kaschny J R, de Castilho C M and de Brito Mota F 2007 Nanotechnology 18 495707
[15] Lin Y, Williams T V, Cao W, Elsayed-Ali H E and Connell J W 2010 The Journal of Physical Chemistry C 114 17434
[16] Noorizadeh S and Shakerzadeh E 2012 Computational Materials Science 56 122
[17] Lvova N and Ananina O Y 2016 Comput. Mater. Sci. 115 11
[18] Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
[19] Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z and Guo W 2016 Small 12 2942
[20] Wang Y and Ding Y 2014 J. Phys.: Condens. Matt. 26 43
[21] Si M S and Xue D S 2007 Phys. Rev. B 75 193409
[22] Ekinci K and Roukes M 2005 Rev. Sci. Instrum 76 061101
[23] Huang X M H, Zorman C A, Mehregany M and Roukes M L 2003 Nature 421 496
[24] Sai N and Mele E 2003 Phys. Rev. B 68 241405
[25] Reed E J 2015 Nat. Nanotechnology 10 106
[26] Duerloo K A N, Ong M T and Reed E J 2012 The Journal of Physical Chemistry Letters 3 2871
[27] Michel K and Verberck B 2009 Phys. Rev. B 80 224301
[28] Li W and Li J 2015 Nano Research 8 3796
[29] Wang J L and Hu W D 2017 Chin. Phys. B 26 037106
[30] Ding Y and Wang Y 2016 J. Mater. Chem. C 4 1517
[31] Noor-A-Alam M, Kim H J and Shin Y H 2014 Phys. Chem. Chem. Phys. 16 6575
[32] Zelisko M, Hanlumyuang Y, Yang S, Liu Y, Lei C, Li J, Ajayan P M and Sharma P 2014 Nat. Commun. 5 4284
[33] Yang J, Kim D, Hong J and Qian X 2010 Surf. Sci. 604 1603
[34] Blöchl P E 1994 Phys. Rev. B 50 17953
[35] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[36] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[37] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[38] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[41] Wu X, Vanderbilt D and Hamann D 2005 Phys. Rev. B 72 035105
[42] Blonsky M N, Zhuang H L, Singh A K and Hennig R G 2015 ACS Nano 9 9885
[43] Zhu H Y, Wang Y, Xiao J, Liu M, Xiong S M, Wong Z J, Ye Z L, Ye Y, Yin X B and Zhang X 2015 Nat. Nanotechnol. 10 151
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[11] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[12] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[13] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[14] Magnetic van der Waals materials: Synthesis, structure, magnetism, and their potential applications
Zhongchong Lin(林中冲), Yuxuan Peng(彭宇轩), Baochun Wu(吴葆春), Changsheng Wang(王常生), Zhaochu Luo(罗昭初), and Jinbo Yang(杨金波). Chin. Phys. B, 2022, 31(8): 087506.
[15] Magnetic properties of oxides and silicon single crystals
Zhong-Xue Huang(黄忠学), Rui Wang(王瑞), Xin Yang(杨鑫), Hao-Feng Chen(陈浩锋), and Li-Xin Cao(曹立新). Chin. Phys. B, 2022, 31(8): 087501.
No Suggested Reading articles found!