Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030701    DOI: 10.1088/1674-1056/abc2b9
GENERAL Prev   Next  

Atomic magnetometer with microfabricated vapor cells based on coherent population trapping

Xiaojie Li(李晓杰)1,2,3, Yue Shi(史越)1,2,3, Hongbo Xue(薛洪波)4, Yong Ruan(阮勇)1,2,3,5,†, and Yanying Feng(冯焱颖)1,2,3,
1 State Key Laboratory of Precision Measurement Technology and Instrument, Tsinghua University, Beijing 100084, China; 2 Key Laboratory of Photonic Control Technology (Ministry of Education), Tsinghua University, Beijing 100084, China; 3 Department of Precision Instrument, Tsinghua University, Beijing 100084, China; 4 State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China; 5 MEMS Institute of Zibo National High-tech Industrial Development Zone, Zibo 255086, China
Abstract  An atomic magnetometer based on coherent population trapping (CPT) resonances in microfabricated vapor cells is demonstrated. Fabricated by the micro-electro-mechanical-system (MEMS) technology, the cells are filled with Rb and Ne at a controlled pressure. An experimental apparatus is built for characterizing properties of microfabricated vapor cells via the CPT effects. The typical CPT linewidth is measured to be about 3 kHz (1.46 kHz with approximately zero laser intensity) for the rubidium D1 line at about 90 °C. The effects of pressure, temperature and laser intensity on CPT linewidth are studied experimentally. A closed-loop atomic magnetometer is finally finished with a sensitivity of 210.5 pT/Hz1/2 at 1 Hz bandwidth. This work paves the way for developing an integrated chip-scale atomic magnetometer in the future.
Keywords:  atomic magnetometer      MEMS      vapor cell      coherent population trapping  
Received:  19 August 2020      Revised:  30 September 2020      Accepted manuscript online:  20 October 2020
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  85.85.+j (Micro- and nano-electromechanical systems (MEMS/NEMS) and devices)  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61473166).
Corresponding Authors:  Corresponding author. E-mail: ruanyong@tsinghua.edu.cn Corresponding author. E-mail: yyfeng@tsinghua.edu.cn   

Cite this article: 

Xiaojie Li(李晓杰), Yue Shi(史越), Hongbo Xue(薛洪波), Yong Ruan(阮勇), and Yanying Feng(冯焱颖) Atomic magnetometer with microfabricated vapor cells based on coherent population trapping 2021 Chin. Phys. B 30 030701

1 Kitching J, Knappe S and Donley E A 2011 IEEE Sens. J. 11 1749
2 Kitching J, Donley E A, Knappe S, Hummon M, Dellis A T, Sherman J, Srinivasan K, Aksyuk V A, Li Q L, Westly D, Roxworthy B and Lal A 2016 J. Phys. Conf. Ser. 723 012056
3 Bison G, Wynands R and Weis A 2005 J. Opt. Soc. Am. B 22 77
4 Merrill R T, McElhinny M W and McFadden P L1998 The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle 3nd edn (San Diego: Academic Press) p. 19
5 Budker D and Romalis M 2007 Nat. Phys. 3 227
6 Weinstock H2012 SQUID Sensors: Fundamentals, Fabrication and Applications 2nd edn (Berlin: Springer Science+Business Media) p. 307
7 Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
8 Shah V, Knappe S, Schwindt P D D and Kitching J 2007 Nat. Photonics 1 649
9 Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
10 Li J J, Du P C, Fu J Q, Wang X T, Zhou Q and Wang R Q 2019 Chin. Phys. B 28 040703
11 Li S L, Xu J, Zhang Z Q, Zhao L B, Long L and Wu Y M 2014 Chin. Phys. B 23 074302
12 Schwindt P D D, Knappe S, Shah V, Hollberg L, Kitching J, Liew L and Moreland J 2004 Appl. Phys. Lett. 85 6409
13 Zhang Y J, Li Y C, Hu X W, Zhang L, Liu Z J, Zhang K F, Mou S H, Zhang S G and Yan S B Chin. Opt. Lett.17 040202
14 Hasegawa M, Chutani R K, Gorecki C, Boudot R, Dziuban P, Giordano V, Clatot S and Mauri L 2011 Sens. Actuator A 167 594
15 Sander T H, Preusser J, Mhaskar R, Kitching J, Trahms L and Knappe S 2012 Biomed. Opt. Express 3 981
16 Knappe S, Schwindt P D D, Shah V, Hollberg L, Kitching J, Liew L and Moreland J 2005 Opt. Express 13 1249
17 Schwindt P D D, Lindseth B, Knappe S, Shah V, Kitching J and Liew L 2007 Appl. Phys. Lett. 90 081102
18 Han R Q, You Z, Zhang F and Ruan Y2017 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS), July 9-13, 2017, Besancon, France, pp. 296-299
19 Han R Q, You Z, Zhang F, Xue H B and Ruan Y 2018 Micromachines 9 175
20 Zhang F, Ruan Y, Feng Y Y and Han R Q2018 IEEE CSAA Guidance, Navigation and Control Conference (CGNCC), August 10-12, 2018, Xiamen, China, pp. 1-5
21 Alzetta G, Gozzini A, Moi L and Orriols G 1976 Nuov. Cim. B 36 5
22 Belcher N, Mikhailov E E and Novikova I 2009 Am. J. Phys. 77 988
23 Vanier J 2005 Appl. Phys. B 81 421
24 Boudot R, Dziuban P, Hasegawa M, Chutani R K, Galliou S, Giordano V and Gorecki C 2011 J. Appl. Phys. 109 014912
[1] A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography
Qing-Qian Guo(郭清乾), Tao Hu(胡涛), Xiao-Yu Feng(冯晓宇), Ming-Kang Zhang(张明康), Chun-Qiao Chen(陈春巧), Xin Zhang(张欣), Ze-Kun Yao(姚泽坤), Jia-Yu Xu(徐佳玉),Qing Wang(王青), Fang-Yue Fu(付方跃), Yin Zhang(张寅), Yan Chang(常严), and Xiao-Dong Yang(杨晓冬). Chin. Phys. B, 2023, 32(4): 040702.
[2] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[3] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[4] Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer
Kai-Feng Yin(尹凯峰), Ji-Xi Lu(陆吉玺), Fei Lu(逯斐), Bo Li(李博), Bin-Quan Zhou(周斌权), and Mao Ye(叶茂). Chin. Phys. B, 2022, 31(11): 110703.
[5] A novel low-loss four-bit bandpass filter using RF MEMS switches
Lulu Han(韩路路), Yu Wang(王宇), Qiannan Wu(吴倩楠), Shiyi Zhang(张世义), Shanshan Wang(王姗姗), and Mengwei Li(李孟委). Chin. Phys. B, 2022, 31(1): 018506.
[6] Effect of staggered array structure on the flow field of micro gas chromatographic column
Daohan Ge(葛道晗), Zhou Hu(胡州), Liqiang Zhang(张立强), and Shining Zhu(祝世宁). Chin. Phys. B, 2022, 31(1): 010701.
[7] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[8] Search for topological defect of axionlike model with cesium atomic comagnetometer
Yucheng Yang(杨雨成), Teng Wu(吴腾), Jianwei Zhang(张建玮), and Hong Guo(郭弘). Chin. Phys. B, 2021, 30(5): 050704.
[9] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[10] A novel multifunctional electronic calibration kit integrated by MEMS SPDT switches
Shan-Shan Wang(王姗姗), Qian-Nan Wu(吴倩楠), Yue-Sheng Gao(高跃升), Jian-Gang Yu(余建刚), Qian-Long Cao(曹钎龙), Lu-Lu Han(韩路路), and Meng-Wei Li(李孟委). Chin. Phys. B, 2021, 30(11): 118501.
[11] Efficient molecular model for squeeze-film damping in rarefied air
Cun-Hao Lu(陆存豪), Pu Li(李普), Yu-Ming Fang(方玉明). Chin. Phys. B, 2019, 28(9): 098501.
[12] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[13] Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography
Jian-Jun Li(李建军), Peng-Cheng Du(杜鹏程), Ji-Qing Fu(伏吉庆), Xu-Tong Wang(王旭桐), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2019, 28(4): 040703.
[14] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[15] Highly reliable and selective ethanol sensor based on α-Fe2O3 nanorhombs working in realistic environments
Wenjun Yan(闫文君), Xiaomin Zeng(曾小敏), Huan Liu(刘欢), Chunwei Guo(郭春伟), Min Ling(凌敏), Houpan Zhou(周后盘). Chin. Phys. B, 2019, 28(10): 106801.
No Suggested Reading articles found!