Molecular dynamic simulation of secondary ion emission from an Al sample bombarded with MeV heavy ions
Xue Jian-Ming (薛建明)a, N. Imanishi (今西信嗣)b
a Institute of Heavy Ion Physics, Peking University, Beijing 100871, China; b Department of Nuclear Engineering, Kyoto University, Kyoto 606-8501, Japan
Abstract Sputtering yields and kinetic energy distributions (KED) of Al atomic ions ejected from a pure aluminium sample under MeV silicon ion bombardment were simulated with the molecular dynamic method. Since the electronic energy loss Se is much higher than the nuclear energy loss Sn when the incident ion energy is as high as several MeV, the Se effect was also taken into consideration in the simulation. It was found that the simulated sputtering yield fits well with the experimental data and the electronic energy loss has a slight effect at incident ion energies higher than 4 MeV. The simulated secondary ion KED spectrum is a little lower in the peak energy and narrower in the peak width than that in the experiment.
Received: 14 November 2001
Revised: 14 September 2001
Accepted manuscript online:
PACS:
68.49.Sf
(Ion scattering from surfaces (charge transfer, sputtering, SIMS))
(Atomic, molecular, and ion beam impact and interactions with surfaces)
Fund: Project supported by the National Natural Science Foundation of China.
Cite this article:
Xue Jian-Ming (薛建明), N. Imanishi (今西信嗣) Molecular dynamic simulation of secondary ion emission from an Al sample bombarded with MeV heavy ions 2002 Chinese Physics 11 245
[1]
Effects of preparation parameters on growth and properties of β-Ga2O3 film Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.