|
|
Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential |
Faustin Blaise Migueu1, Mercel Vubangsi1,2, Martin Tchoffo1,3,†, and Lukong Cornelius Fai1 |
1 Unité de Recherche de Matière Condensée, d'Électronique et de Traitement du Signal, Département de Physique, Faculté des Sciences, Université de Dschang, B. P:67, Dschang, Cameroon; 2 Computational Material Science Laboratory, Higher Technical Teachers'Training College Bambili, University of Bamenda, PO Box 39, Bamenda, Cameroon; 3 Centre d'Études et de Recherches en Agronomie et en Biodiversité, Université de Dschang, Dschang, Cameroon |
|
|
Abstract A D=1 position-dependent mass approach to constructing nonlinear quantum states for a modified Coulomb potential is used to generate Gazeau-Klauder coherent states. It appears that their energy eigenvalues are scaled down by the quantum number and the nonlinearity coefficient. We study the basic properties of these states, which are found to be undefined on the whole complex plane, and some details of their revival structure are discussed.
|
Received: 13 October 2020
Revised: 02 December 2020
Accepted manuscript online: 04 January 2021
|
PACS:
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
21.10.Sf
|
(Coulomb energies, analogue states)
|
|
42.50.Md
|
(Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)
|
|
Corresponding Authors:
Martin Tchoffo
E-mail: mtchoffo2000@yahoo.fr
|
Cite this article:
Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential 2021 Chin. Phys. B 30 060309
|
[1] Xia Y, Yang P, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353 [2] Amir N and Iqbal S 2020 J. Math. Phys. 61 082102 [3] Tchoffo M, Migueu F B, Vubangsi M and Fai L C 2019 Heliyon 5 e02395 [4] Dodin I Y and Fisch N J 2008 Phys. Rev. E 77 1 [5] Andronov A A, Belyantsev A M, Gavrilenko V I, Dodin E P, Krasil'nik E F, Nikonorov V V, Pavlov S A and Shvarts M M 1986 Zh. Eksp. Teor. Fiz. 90 367 [6] Tajmar M and Assis A K T 2015 J. Adv. Phys. 4 77 [7] Zeilinger A, Shull C G, Horne M A and Finkelstein K D 1986 Phys. Rev. Lett. 57 3089 [8] Amir N and Iqbal S 2016 Commun. Theor. Phys. 66 41 [9] Wang J E, Greenwood E and Stojkovic 2009 Phys. Rev. D 80 124027 [10] Meyur S, Maji S, and Debnath S 2014 Adv. High Energy Phys. 2014 1 [11] Peña J J, Morales J, Garcia-Ravelo J and Arcos-Diaz L 2012 Int. J. Phys. Math. Sc. 11 338 [12] Vubangsi M, Tchoffo M and Fai L C 2014 Eur. Phys. J. Plus 130 07 [13] Dong S H 2007 Factorization method in quantum mechanics p. 307 [14] Cooper F, Khare A and Sukhatme U 1995 Physics Reports 251 267 [15] Tchoffo M, Vubangsi M and Fai L C 2014 Phys. Sci. Int. J. 4 1370 [16] Tchoffo M, Vubangsi M and Fai L C 2014 Eur. Phys. J. Plus 129 105 [17] Amir N and Iqbal S 2015 Commun. Theor. Phys. 111 20005 [18] Balantekin A B 1998 Phys. Rev. A 57 4188 [19] Aleixo A N F and Balantekin A B 2007 J. Phys. A: Math. Theor. 40 3463 [20] Palma G and Raff U 2006 Can. J. Phys. 84 787 [21] Loinaz W and Newman T J 1999 J. Phys. A: Math. Gen. 32 8889 [22] Jaramillo B, Martinez-y-Romero R P, Nunez-Yepez H N and Salas-Brito A L 2009 Phys. Lett. A 374 150 [23] Imbo T D and Sukhatme U P 1985 Phys. Rev. Lett. 54 2184 [24] Morales J, Peña J J and Lopez-Bonilla J L 2003 J. Mol. Struct. (TeoChem) 621 19 [25] Dai Xianxi, Jixin Dai and Jiqiong Dai 1997 Phys. Rev. A 55 2617 [26] Reyes J A and del Castillo-Mussot M 1999 J. Phys. A: Math. Gen. 32 2017 [27] Amir N and Iqbal S Commun 2017 Commun. Theor. Phys. 68 181 [28] Monir H B, Amir N and Iqbal S 2019 Int. J. Theor. Phys. 58 1776 [29] Ali S T, Antoine J P and Gazeau J P 1999 Coherent States, wavelets and their applications p. 385 [30] Combescure M and Robert D 2012 Coherent States and Applications in Mathematical Physics p. 431 [31] Perelomov A 2012 Generalized coherent states and their applications p. 332 [32] Gazeau J P 2009 Coherent states in quantum physics p. 360 [33] Roos O V 1983 Phys. Rev. B 27 7547 [34] Costa Filho R N, Almeida M P, Farias G A and Andrade Jr J S 2011 Phys. Rev. A 84 050102(R) [35] Mustafa O and Mazharimousavi S H 2007 Int. J. Theor. Phys. 46 1786 [36] Ball C J, Loos P and Gill P M W 2017 Phys. Chem. Chem. Phys. 19 3987 [37] Glick A J, Cohen R J and Bryant G W 1988 Phys. Rev. B 37 2653 [38] Derezinski J 2013 Ann. Henri Poincaré [39] Dereziński J and Richard S 2018 Ann. Henri Poincaré 19 2869 [40] Knospe O and Schmidt R1996 Phys. Rev. A 54 1154 [41] Rajabi A A and Hamzavi M 2013 J. Theor. Appl. Phys. 7 17 [42] Downing C A and Portnoil M E Phys 2014 Phys. Rev. A 90 052116 [43] Lombard R J, Mezhoud R and Yekken R 2009 Phys. Scr. 80 065005 [44] Haines L K and Roberts D H 1969 Am. J. Phys. 37 1145 [45] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products p. 1221 [46] Nieto M M 2000 Phys. Rev. A 61 034901 [47] Nouri S 2002 Phys. Rev. A 65 062108 [48] Klauder J and Skagerstam B 1985 Coherent states: Applications in physics and mathematical physics p. 927 [49] Zhang X Z, Wang Z H, Li H, Wu Q, Tang B Q, Gao F and Xu J J 2008 Chin. Phys. Lett. 25 3976 [50] Mandel L 1979 Opt. Letters 4 205 [51] Ghosh S 2012 J. Math. Phys. 53 062104 [52] Penninia F and Plastino A 2014 Revista Mexicana de Física E 60 103 [53] Bihu L V, Huichao Z, Lipeng W, Chunfeng Z, Xiaoyong W, Jiayu Z and Min X 2018 Nat. Comun. 9 1536 [54] Knospe O and Schmidt R 1996 Phys. Rev. A 54 1154 [55] Venugopalan A and Agarwal G S Phys 1999 Phys. Rev. A 59 1413 [56] Maninder K, Bindiya A and Arvind 2018 Eur. Phys. J. D 72 136 [57] Bluhm R, Kosteleckỳ A and Porter J A 1996 Am. J. Phys. 64 944 [58] Robinett R W 2004 Physics Reports 392 1 [59] Roy U, Banerji J and Panigrahi P K 2005 J. PhysA: Math. Gen. 38 9115 [60] Averbukh I Sh and Perelman N F 1989 Phys. Lett. A 139 449 [61] Aronstein D L and Stroud-Jr C R 2005 Las. Phys. 15 1496 [62] Bluhm R and Kosteleckỳ V A 1995 Phys. Rev. A. 51 4767 [63] Vrakking M J. J., Villeneuve D M and Stolow A 1996 Phys. Rev. A 54 R37 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|