Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060309    DOI: 10.1088/1674-1056/abd7e2
GENERAL Prev   Next  

Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential

Faustin Blaise Migueu1, Mercel Vubangsi1,2, Martin Tchoffo1,3,†, and Lukong Cornelius Fai1
1 Unité de Recherche de Matière Condensée, d'Électronique et de Traitement du Signal, Département de Physique, Faculté des Sciences, Université de Dschang, B. P:67, Dschang, Cameroon;
2 Computational Material Science Laboratory, Higher Technical Teachers'Training College Bambili, University of Bamenda, PO Box 39, Bamenda, Cameroon;
3 Centre d'Études et de Recherches en Agronomie et en Biodiversité, Université de Dschang, Dschang, Cameroon
Abstract  A D=1 position-dependent mass approach to constructing nonlinear quantum states for a modified Coulomb potential is used to generate Gazeau-Klauder coherent states. It appears that their energy eigenvalues are scaled down by the quantum number and the nonlinearity coefficient. We study the basic properties of these states, which are found to be undefined on the whole complex plane, and some details of their revival structure are discussed.
Keywords:  deformed Coulomb potential      energy spectrum      coherent states      photon number distribution      quantum revivals  
Received:  13 October 2020      Revised:  02 December 2020      Accepted manuscript online:  04 January 2021
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  21.10.Sf (Coulomb energies, analogue states)  
  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
Corresponding Authors:  Martin Tchoffo     E-mail:  mtchoffo2000@yahoo.fr

Cite this article: 

Faustin Blaise Migueu, Mercel Vubangsi, Martin Tchoffo, and Lukong Cornelius Fai Wave packet dynamics of nonlinear Gazeau-Klauder coherent states of a position-dependent mass system in a Coulomb-like potential 2021 Chin. Phys. B 30 060309

[1] Xia Y, Yang P, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353
[2] Amir N and Iqbal S 2020 J. Math. Phys. 61 082102
[3] Tchoffo M, Migueu F B, Vubangsi M and Fai L C 2019 Heliyon 5 e02395
[4] Dodin I Y and Fisch N J 2008 Phys. Rev. E 77 1
[5] Andronov A A, Belyantsev A M, Gavrilenko V I, Dodin E P, Krasil'nik E F, Nikonorov V V, Pavlov S A and Shvarts M M 1986 Zh. Eksp. Teor. Fiz. 90 367
[6] Tajmar M and Assis A K T 2015 J. Adv. Phys. 4 77
[7] Zeilinger A, Shull C G, Horne M A and Finkelstein K D 1986 Phys. Rev. Lett. 57 3089
[8] Amir N and Iqbal S 2016 Commun. Theor. Phys. 66 41
[9] Wang J E, Greenwood E and Stojkovic 2009 Phys. Rev. D 80 124027
[10] Meyur S, Maji S, and Debnath S 2014 Adv. High Energy Phys. 2014 1
[11] Peña J J, Morales J, Garcia-Ravelo J and Arcos-Diaz L 2012 Int. J. Phys. Math. Sc. 11 338
[12] Vubangsi M, Tchoffo M and Fai L C 2014 Eur. Phys. J. Plus 130 07
[13] Dong S H 2007 Factorization method in quantum mechanics p. 307
[14] Cooper F, Khare A and Sukhatme U 1995 Physics Reports 251 267
[15] Tchoffo M, Vubangsi M and Fai L C 2014 Phys. Sci. Int. J. 4 1370
[16] Tchoffo M, Vubangsi M and Fai L C 2014 Eur. Phys. J. Plus 129 105
[17] Amir N and Iqbal S 2015 Commun. Theor. Phys. 111 20005
[18] Balantekin A B 1998 Phys. Rev. A 57 4188
[19] Aleixo A N F and Balantekin A B 2007 J. Phys. A: Math. Theor. 40 3463
[20] Palma G and Raff U 2006 Can. J. Phys. 84 787
[21] Loinaz W and Newman T J 1999 J. Phys. A: Math. Gen. 32 8889
[22] Jaramillo B, Martinez-y-Romero R P, Nunez-Yepez H N and Salas-Brito A L 2009 Phys. Lett. A 374 150
[23] Imbo T D and Sukhatme U P 1985 Phys. Rev. Lett. 54 2184
[24] Morales J, Peña J J and Lopez-Bonilla J L 2003 J. Mol. Struct. (TeoChem) 621 19
[25] Dai Xianxi, Jixin Dai and Jiqiong Dai 1997 Phys. Rev. A 55 2617
[26] Reyes J A and del Castillo-Mussot M 1999 J. Phys. A: Math. Gen. 32 2017
[27] Amir N and Iqbal S Commun 2017 Commun. Theor. Phys. 68 181
[28] Monir H B, Amir N and Iqbal S 2019 Int. J. Theor. Phys. 58 1776
[29] Ali S T, Antoine J P and Gazeau J P 1999 Coherent States, wavelets and their applications p. 385
[30] Combescure M and Robert D 2012 Coherent States and Applications in Mathematical Physics p. 431
[31] Perelomov A 2012 Generalized coherent states and their applications p. 332
[32] Gazeau J P 2009 Coherent states in quantum physics p. 360
[33] Roos O V 1983 Phys. Rev. B 27 7547
[34] Costa Filho R N, Almeida M P, Farias G A and Andrade Jr J S 2011 Phys. Rev. A 84 050102(R)
[35] Mustafa O and Mazharimousavi S H 2007 Int. J. Theor. Phys. 46 1786
[36] Ball C J, Loos P and Gill P M W 2017 Phys. Chem. Chem. Phys. 19 3987
[37] Glick A J, Cohen R J and Bryant G W 1988 Phys. Rev. B 37 2653
[38] Derezinski J 2013 Ann. Henri Poincaré
[39] Dereziński J and Richard S 2018 Ann. Henri Poincaré 19 2869
[40] Knospe O and Schmidt R1996 Phys. Rev. A 54 1154
[41] Rajabi A A and Hamzavi M 2013 J. Theor. Appl. Phys. 7 17
[42] Downing C A and Portnoil M E Phys 2014 Phys. Rev. A 90 052116
[43] Lombard R J, Mezhoud R and Yekken R 2009 Phys. Scr. 80 065005
[44] Haines L K and Roberts D H 1969 Am. J. Phys. 37 1145
[45] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series, and Products p. 1221
[46] Nieto M M 2000 Phys. Rev. A 61 034901
[47] Nouri S 2002 Phys. Rev. A 65 062108
[48] Klauder J and Skagerstam B 1985 Coherent states: Applications in physics and mathematical physics p. 927
[49] Zhang X Z, Wang Z H, Li H, Wu Q, Tang B Q, Gao F and Xu J J 2008 Chin. Phys. Lett. 25 3976
[50] Mandel L 1979 Opt. Letters 4 205
[51] Ghosh S 2012 J. Math. Phys. 53 062104
[52] Penninia F and Plastino A 2014 Revista Mexicana de Física E 60 103
[53] Bihu L V, Huichao Z, Lipeng W, Chunfeng Z, Xiaoyong W, Jiayu Z and Min X 2018 Nat. Comun. 9 1536
[54] Knospe O and Schmidt R 1996 Phys. Rev. A 54 1154
[55] Venugopalan A and Agarwal G S Phys 1999 Phys. Rev. A 59 1413
[56] Maninder K, Bindiya A and Arvind 2018 Eur. Phys. J. D 72 136
[57] Bluhm R, Kosteleckỳ A and Porter J A 1996 Am. J. Phys. 64 944
[58] Robinett R W 2004 Physics Reports 392 1
[59] Roy U, Banerji J and Panigrahi P K 2005 J. PhysA: Math. Gen. 38 9115
[60] Averbukh I Sh and Perelman N F 1989 Phys. Lett. A 139 449
[61] Aronstein D L and Stroud-Jr C R 2005 Las. Phys. 15 1496
[62] Bluhm R and Kosteleckỳ V A 1995 Phys. Rev. A. 51 4767
[63] Vrakking M J. J., Villeneuve D M and Stolow A 1996 Phys. Rev. A 54 R37
[1] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[2] An improved secondary electrons energy spectrum model and its application in multipactor discharge
Wan-Zhao Cui(崔万照), Heng Zhang(张恒), Yun Li(李韵), Yun He(何鋆), Qi Wang(王琪), Hong-Tai Zhang(张洪太), Hong-Guang Wang(王洪广), Jing Yang(杨晶). Chin. Phys. B, 2018, 27(3): 038401.
[3] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[4] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[5] Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique
Dušan Popov, Romeo Negrea, Miodrag Popov. Chin. Phys. B, 2016, 25(7): 070301.
[6] Hong-Ou-Mandel interference with two independent weak coherent states
Hua Chen(陈华), Xue-Bi An(安雪碧), Juan Wu(伍娟), Zhen-Qiang Yin(银振强), Shuang Wang(王双), Wei Chen(陈巍), Zhen-Fu Han(韩正甫). Chin. Phys. B, 2016, 25(2): 020305.
[7] Spectral energetic properties of the X-ray-boosted photoionization by an intense few-cycle laser
Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍). Chin. Phys. B, 2014, 23(7): 074207.
[8] Maximal entanglement from photon-added nonlinear coherent states via unitary beam splitters
K. Berrada. Chin. Phys. B, 2014, 23(2): 024208.
[9] Statistical properties of the photoelectron energy spectrum generated by an intense laser pulse and a continuous X-ray
Ge Yu-Cheng (葛愉成), Ge Xiang-Jie (葛湘洁), He Hai-Ping (何海萍). Chin. Phys. B, 2014, 23(11): 114203.
[10] Time-dependent approach to the double-channel dissociation of the NaCs molecule induced by pulsed lasers
Zhang Cai-Xia (张彩霞), Niu Yu-Quan (牛余全), Meng Qing-Tian (孟庆田). Chin. Phys. B, 2014, 23(10): 103301.
[11] Barut–Girardello and Gilmore–Perelomov coherent states for pseudoharmonic oscillators and their nonclassical properties:Factorization method
M K Tavassoly, H R Jalali. Chin. Phys. B, 2013, 22(8): 084202.
[12] X-ray-boosted photoionization for the measurement of an intense laser pulse
Ge Yu-Cheng (葛愉成), He Hai-Ping (何海萍). Chin. Phys. B, 2013, 22(6): 063201.
[13] Calculation of the photoelectron spectra under the scaling transform
Ye Hui-Liang (叶会亮), Wu Yan (吴艳), Zhang Jing-Tao (张敬涛), Shao Chu-Yin (邵初寅). Chin. Phys. B, 2013, 22(1): 013207.
[14] Effects of photon addition on quantum nonlocality of squeezed entangled coherent states
Zhou Ben-Yuan (周本元), Deng Lei (邓磊), Duan Yong-Fa (段永法), Yu Li (喻莉), Li Gao-Xiang (李高翔). Chin. Phys. B, 2012, 21(9): 090302.
[15] Multiple-plateau structure and scaling relation in photoelectron spectra of high-order above-threshold ionization
Wu Yan (吴艳), Ye Hui-Liang (叶会亮), Zhang Jing-Tao(张敬涛), and Guo Dong-Sheng (郭东升) . Chin. Phys. B, 2012, 21(5): 053201.
No Suggested Reading articles found!