Please wait a minute...
Chinese Physics, 2002, Vol. 11(2): 178-182    DOI: 10.1088/1009-1963/11/2/314
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetoresistance and magnetic properties of Fe3O4 nanoparticle compacts

Wang Hai (王海)a, Zhao Hong-Wu (赵宏武)a, Wang Chang-Sheng (王常生)a, Wang Yin-Jun (王荫君)a, Zhan Wen-Shan (詹文山)a, Li Feng-Ying (李凤英)b, Jin Chang-Qing (靳常青)b, Meng Fan-Bin (孟凡斌)c, Li Yang-Xian (李养贤)c 
a State Key Laboratory of Magnetism, Institute of Physics and Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China; b Institute of Physics and Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100080, China; c Material Test Center, Hebei University of Technology, Tianjin 300130, China
Abstract  In this paper, we report on the magnetic properties of Fe3O4 nanoparticles with different grain sizes under different pressures. In all the samples, the saturated magnetization Ms shows a linear decrease with increasing pressure. The thickness of the magnetic dead layer on the nanoparticle surface under different pressures was roughly estimated, which also increases with increasing pressure. The transport measurements of the nanoparticle Fe3O4 compacts show that the low-field magnetoresistance (MR) value is insensitive to the grain size in a wide temperature range; however, the high-field MR value is dependent on grain size, especially at low temperatures. These experimental results can be attributed to the different surface states of the nanoparticles.
Keywords:  nanoparticle      saturated magnetization      magnetoresistance  
Received:  03 July 2001      Revised:  29 September 2001      Accepted manuscript online: 
PACS:  75.47.Pq (Other materials)  
  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 59928101 and 59871063).

Cite this article: 

Wang Hai (王海), Zhao Hong-Wu (赵宏武), Wang Chang-Sheng (王常生), Wang Yin-Jun (王荫君), Zhan Wen-Shan (詹文山), Li Feng-Ying (李凤英), Jin Chang-Qing (靳常青), Meng Fan-Bin (孟凡斌), Li Yang-Xian (李养贤) Magnetoresistance and magnetic properties of Fe3O4 nanoparticle compacts 2002 Chinese Physics 11 178

[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Reconstruction and functionalization of aerogels by controlling mesoscopic nucleation to greatly enhance macroscopic performance
Chen-Lu Jiao(焦晨璐), Guang-Wei Shao(邵光伟), Yu-Yue Chen(陈宇岳), and Xiang-Yang Liu(刘向阳). Chin. Phys. B, 2023, 32(3): 038103.
[4] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[5] Optical pulling force on nanoparticle clusters with gain due to Fano-like resonance
Jiangnan Ma(马江南), Feng Lv(冯侣), Guofu Wang(王国富), Zhifang Lin(林志方), Hongxia Zheng(郑红霞), and Huajin Chen(陈华金). Chin. Phys. B, 2023, 32(1): 014205.
[6] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[7] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[8] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[9] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[10] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[11] Up/down-conversion luminescence of monoclinic Gd2O3:Er3+ nanoparticles prepared by laser ablation in liquid
Hua-Wei Deng(邓华威) and Di-Hu Chen(陈弟虎). Chin. Phys. B, 2022, 31(7): 078701.
[12] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
[13] Onion-structured transition metal dichalcogenide nanoparticles by laser fabrication in liquids and atmospheres
Le Zhou(周乐), Hongwen Zhang(张洪文), Qian Zhao(赵倩), and Weiping Cai(蔡伟平). Chin. Phys. B, 2022, 31(7): 076106.
[14] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[15] Small-angle neutron scattering study on the stability of oxide nanoparticles in long-term thermally aged 9Cr-oxide dispersion strengthened steel
Peng-Lin Gao(高朋林), Jian Gong(龚建), Qiang Tian(田强), Gung-Ai Sun(孙光爱), Hai-Yang Yan(闫海洋),Liang Chen(陈良), Liang-Fei Bai(白亮飞), Zhi-Meng Guo(郭志猛), and Xin Ju(巨新). Chin. Phys. B, 2022, 31(5): 056102.
No Suggested Reading articles found!