Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087103    DOI: 10.1088/1674-1056/ab943a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation

Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明)
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract  The fascinating Dirac cone in honeycomb graphene, which underlies many unique electronic properties, has inspired the vast endeavors on pursuing new two-dimensional (2D) Dirac materials. Based on the density functional theory method, a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted. The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions. Importantly, the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV, which has an intrinsic Dirac cone arising from the special hexagonal lattice structure. Hole doping leads to the spin polarization of the electron, which results in a Dirac half-metal feature with single-spin Dirac fermion. This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.
Keywords:  two-dimensional (2D) Dirac cone material      Dirac half-metal      first-principles calculation      spin-orbit coupling  
Received:  13 March 2020      Revised:  18 May 2020      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674136 and 11564022), Yunnan Province for Recruiting High-Caliber Technological Talents, China (Grant No. 1097816002), Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders, China (Grant No. 2017HB010), the Academic Qinglan Project of KUST (Grant No. 1407840010), the Analysis and Testing Fund of KUST (Grant No. 2017M20162230010), and the High-level Talents of KUST (Grant No. 1411909425).
Corresponding Authors:  Cuixia Yan, Cuixia Yan     E-mail:  cuixiayan09@gmail.com;j.cai@kmsut.edu.cn

Cite this article: 

Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明) Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation 2020 Chin. Phys. B 29 087103

[1] Wehling T, Black-Schaffer A M and Balatsky A V 2014 Adv. Phys. 63 1
[2] Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[4] Cahangirov S, Topsakal M, Aktürk E, Şahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[5] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[6] Novoselov K 2007 Nat. Mater. 6 720
[7] Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S and Firsov A A 2005 Nature 438 197
[8] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[9] Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
[10] Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
[11] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P and Koshino M 2013 Nature 497 598
[12] Ponomarenko L, Gorbachev R, Yu G, Elias D, Jalil R, Patel A, Mishchenko A, Mayorov A, Woods C and Wallbank J 2013 Nature 497 594
[13] Hunt B, Sanchez-Yamagishi J, Young A, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M and Jarillo Herrero P 2013 Science 340 1427
[14] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Solid State Commun. 146 351
[15] Hellerstedt J, Yudhistira I, Edmonds M T, Chang L and Fuhrer M S 2017 Phys. Rev. Mater. 1 054203
[16] Dil J H, Al E, Osterwalder J, Patthey L and Meier F 2009 Phys. Rev. Lett. 103 146401
[17] Sato T, Segawa K, Guo H, Sugawara K and Ando Y 2010 Phys. Rev. Lett. 105 136802
[18] Li X, Zhang F, Niu Q and Feng J 2014 Sci. Rep. 4 6397
[19] Chen Xue Jiao L L, Shen Dezhen 2019 Chin. Phys. B 28 77106
[20] Liu P F, Zhou L J, Tretiak S and Wu L M 2017 J. Mater. Chem. C 5 9181
[21] Wang Z F, Liu Z and Liu F 2013 Nat. Commun. 4 1471
[22] Ma Y, Dai Y, Li X, Sun Q and Huang B 2014 Carbon 73 382
[23] Ma Y, Dai Y, Wei W, Huang B B and Whangbo M H 2014 Sci. Rep. 4 7297
[24] Ishizuka H and Motome Y 2012 Phys. Rev. Lett. 109 237207
[25] Cai T Y, Li X, Wang F, Ju S, Feng J and Gong C D 2015 Nano Lett. 15 6434
[26] Wei L, Zhang X M and Zhao M W 2016 Phys. Chem. Chem. Phys. 18 8059
[27] Ji W X, Zhang B M, Zhang S F, Zhang C W, Ding M, Li P and Wang P J 2017 J. Mater. Chem. C 5 8504
[28] Wu M H, Wang Z J, Liu J W, Li W B, Fu H H, Sun L, Liu X, Pan M H, Weng H M and Dincǎ M 2017 2D Mater. 4 015015
[29] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[30] He J, Ma S, Lyu P and Nachtigall P 2016 J. Mater. Chem. C 4 2518
[31] Liu Z F, Liu J Y and Zhao J J 2017 Nano Res. 10 1972
[32] Ji W X, Zhang B M, Zhang S F, Zhang C W, Ding M, Wang P J and Zhang R Q 2018 Nanoscale 10 13645
[33] Sun Q L and Kioussis N 2018 Phys. Rev. B 97 094408
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[37] Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[38] Nosé S 1984 J. Chem. Phys. 81 511
[39] Song L L, Zhang L Z, Guan Y R, Lu J C, Yan C X and Cai J M 2019 Chin. Phys. B 28 037101
[40] Liu P F, Zhou L, Frauenheim T and Wu L M 2016 Phys. Chem. Chem. Phys. 18 30379
[41] Zhang S L, Xie M Q, Li F Y, Yan Z, Li Y F, Kan E J, Liu W, Chen Z F and Zeng H B 2016 Angew. Chem. 55 1666
[42] Pumera M and Sofer Z 2017 Adv. Mater. 29 1605299
[43] Liu Z R, Chen J H, Wang S B, Yuan D W, Yin M J and Wu C L 2011 Acta Mater. 59 7396
[44] Wolverton C and Ozoliņš V 2006 Phys. Rev. B 73 144104
[45] Savin A, Nesper R, Wengert S and Fässler T F 1997 Angew. Chem. 36 1808
[46] Wang C, Zhou X, Pan Y, Qiao J, Kong X, Kaun C C and Ji W 2018 Phys. Rev. B 97 245409
[47] Javey A, Guo J, Farmer D B, Wang Q, Wang D, Gordon R G, Lundstrom M and Dai H 2004 Nano Lett. 4 447
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[11] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[12] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[13] Influence of Rashba spin-orbit coupling on Josephson effect in triplet superconductor/two-dimensional semiconductor/triplet superconductor junctions
Bin-Hao Du(杜彬豪), Man-Ni Chen(陈嫚妮), and Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2022, 31(7): 077201.
[14] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[15] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
No Suggested Reading articles found!