CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Giant interface spin-orbit torque in NiFe/Pt bilayers |
Shu-Fa Li(李树发)1, Tao Zhu(朱涛)2 |
1 College of Electronics and Information Engineering, Guangdong Ocean University, Zhanjiang 524088, China; 2 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The current-induced spin-orbit torque (SOT) plays a dominant role to manipulate the magnetization in a heavy metal/ferromagnetic metal bilayer. We separate the contributions of interfacial and bulk spin-orbit coupling (SOC) to the effective field of field-like SOT in a typical NiFe/Pt bilayer by planar Hall effect (PHE). The effective field from interfacial SOC is directly measured at the transverse PHE configuration. Then, at the longitudinal configuration, the effective field from bulk SOC is determined, which is much smaller than that from interfacial SOC. The giant interface SOT in NiFe/Pt bilayers suggests that further analysis of interfacial effects on the current-induced manipulation of magnetization is necessary.
|
Received: 20 April 2020
Revised: 11 May 2020
Accepted manuscript online:
|
PACS:
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
72.25.Ba
|
(Spin polarized transport in metals)
|
|
75.76.+j
|
(Spin transport effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574375). |
Corresponding Authors:
Tao Zhu
E-mail: tzhu@iphy.ac.cn
|
Cite this article:
Shu-Fa Li(李树发), Tao Zhu(朱涛) Giant interface spin-orbit torque in NiFe/Pt bilayers 2020 Chin. Phys. B 29 087102
|
[1] |
Brataas A and Hals K M D 2014 Nat. Nanotechnol. 9 86
|
[2] |
Gambardella P and Miron I M 2011 Philos. Trans. A. Math. Phys. Eng. Sci. 369 3175
|
[3] |
Haney P M, Lee H W, Lee K J, Manchon A and Stiles M D 2013 Phys. Rev. B 87 174411
|
[4] |
Ralph D and Stiles M 2008 J. Magn. Magn. Mater. 320 1190
|
[5] |
Brataas A, Tserkovnyak Y, Bauer G E W and Kelly P J 2012 Spin Pumping and Spin Transfer in Spin Current (Oxford:Oxford University Press) chap 8 p. 87
|
[6] |
Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A and Gambardella P 2011 Nature 476 189
|
[7] |
Liu L, Pai C F, Li Y, Tseng H W, Ralph D C and Buhrman R A 2012 Science 336 555
|
[8] |
Yu G, Upadhyaya P, Fan Y, Alzate J G, Jiang W, Wong K L, Takei S, Bender S A, Chang L T, Jiang Y, Lang M, Tang J, Wang Y, Tserkovnyak Y, Amiri P K and Wang K L 2014 Nat. Nanotechnol. 9 548
|
[9] |
Feng X Y, Zhang Q H, Zhang H W, Zhang Y, Zhong R, Lu B W, Cao J W and Fan X L 2019 Chin. Phys. B 28 107105
|
[10] |
Ramaswamy R, Lee J M, Cai K and Yang H 2018 Appl. Phys. Rev. 5 031107
|
[11] |
Zhao Y C, Yang G, Dong B W, Wang S G, Wang C, Sun Y, Zhang J Y and Yu G H 2016 Chin. Phys. B 25 077501
|
[12] |
Avci C O, Rosenberg E, Baumgartner M, Beran L, Quindeau A, Gambardella P, Ross C A and Beach G S D 2017 Appl. Phys. Lett. 111 072406
|
[13] |
Gabor M, Petrisor T, Mos R B, Mesaros A, Nasui M, Belmeguenai M, Zighem F and Tiusan C 2016 J. Phys. D:Appl. Phys. 49 365003
|
[14] |
Hsu W H, Bell R and Victora R H 2018 IEEE Trans. Magn. 54 3401205
|
[15] |
Garello K, Miron I M, Avci C O, Freimuth F, Mokrousov Y, Blügel S, Auffret S, Boulle O, Gaudin G and Gambardella P 2013 Nat. Nanotechnol. 8 587
|
[16] |
Miron I M, Gaudin G, Auffret S, Rodmacq B, Schuhl A, Pizzini S, Vogel J and Gambardella P 2010 Nat. Mater. 9 230
|
[17] |
Haazen P P J, Muré E, Franken J H, Lavrijsen R, Swagten H J M and Koopmans B 2013 Nat. Mater. 12 299
|
[18] |
Liu L Q, Lee O J, Gudmundsen T J, Ralph D C and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
|
[19] |
Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S and Ohno H 2013 Nat. Mater. 12 240
|
[20] |
Zheng Z C, Guo Q X, Jo D, Go D, Wang L H, Chen H C, Yin W, Wang X M, Yu G H, He W, Lee H W, Teng J and Zhu T 2020 Phys. Rev. Res. 2 013127
|
[21] |
Qiu X P, Deorani P, Narayanapillai K, Lee K S, Lee K J, Lee H W and Yang H S 2015 Sci. Rep. 4 4491
|
[22] |
Emori S, Nan T X, Belkessam A M, Wang X J, Matyushov A D, Babroski C J, Gao Y, Lin H and Sun N X 2016 Phys. Rev. B 93 180402(R)
|
[23] |
Fan X, Wu J, Chen Y, Jerry M J, Zhang H and Xiao J Q 2013 Nat. Commun. 4 1799
|
[24] |
Zhou X, Tang M, Fan X L, Qiu X P and Zhou S M 2016 Phys. Rev. B 94 144427
|
[25] |
Wang L, Wesselink R J H, Liu Y, Yuan Z, Xia K and Kelly R J 2016 Phys. Rev. Lett. 116 196602
|
[26] |
Li S F and Zhu T 2020 Jpn. J. Appl. Phys. 59 040906
|
[27] |
Thanh N T, Chun M G, Schmalhorst J, Reiss G, Kim K Y and Kim C G 2006 J. Magn. Magn. Mater. 304 e84
|
[28] |
Li G H, Yang T, Hu Q and Lai W Y 2000 Appl. Phys. Lett. 77 1032
|
[29] |
Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
|
[30] |
Miron I M, Moore T, Szambolics H, Buda L D, Auffret S, Rodmacq B, Pizzini S, Vogel J, Bonfim M, Schuhl A and Gaudin G 2011 Nat. Mater. 10 419
|
[31] |
Qiu X P, Narayanapillai K, Wu Y, Deorani P, Yang D H, Noh W S, Park J H, Lee K J, Lee H W and Yang H 2015 Nat. Nanotechnol. 10 333
|
[32] |
Greening R W, Smith D A, Lin Y M, Jiang Z J, Barber J, Dail S, Heremans J J and Emori S 2020 Appl. Phys. Lett. 116 052402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|