Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077202    DOI: 10.1088/1674-1056/ab9612
RAPID COMMUNICATION Prev   Next  

Effect of weak disorder in multi-Weyl semimetals

Zhen Ning(宁震)1, Bo Fu(付博)2, Qinwei Shi(石勤伟)3, Xiaoping Wang(王晓平)1,3
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China;
2 Department of Physics, The University of Hong Kong, Hong Kong, China;
3 Hefei National Laboratory for Physical Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We study the behaviors of three-dimensional double and triple Weyl fermions in the presence of weak random potential. By performing the Wilsonian renormalization group (RG) analysis, we reveal that the quasiparticle experiences strong renormalization which leads to the modification of the density of states and quasiparticle residue. We further utilize the RG analysis to calculate the classical conductivity and show that the diffusive transport is substantially corrected due to the novel behavior of the quasiparticle and can be directly measured by experiments.
Keywords:  Weyl semimetals      renormalization group      quasiparticle      conductivity  
Received:  05 March 2020      Revised:  18 May 2020      Accepted manuscript online: 
PACS:  72.80.Ng (Disordered solids)  
  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  11.10.Gh (Renormalization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874337).
Corresponding Authors:  Bo Fu     E-mail:  bofu123@mail.ustc.edu.cn

Cite this article: 

Zhen Ning(宁震), Bo Fu(付博), Qinwei Shi(石勤伟), Xiaoping Wang(王晓平) Effect of weak disorder in multi-Weyl semimetals 2020 Chin. Phys. B 29 077202

[1] Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, et al. 2015 Nat. Phys. 11 724
[2] Xu S Y, Belopolski I, Alidoust N, Neupane M, Zhang C, et al. 2015 Science 349 613
[3] Wang H C and Wang J 2018 Chin. Phys. B 27 107402
[4] Xu S Y, Alidoust N, Belopolski I, Zhang C, Bian G, et al. 2015 Nat. Phys. 11 748
[5] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412
[6] Burkov A A 2014 Phys. Rev. Lett. 113 187202
[7] Lu H Z and Sheng S Q 2016 Chin. Phys. B25, 117202
[8] Sun L and Wan S L 2015 Chin. Phys. Lett. 32 057501
[9] Xu G, Weng H, Wang Z, Dai X and Fang Z 2011 Phys. Rev. Lett. 107 186806
[10] Fang C, Gilbert M J, Dai X and Bernevig B A 2012 Phys. Rev. Lett. 108 266802
[11] Huang S M, Xu S Y, Belopolski I, Lee C C, Chang G, et al. 2016 Proc. Natl. Acad. Sci. USA 113 1180
[12] Liu Q H and Zunger A 2017 Phys. Rev. X 7 021019
[13] Mai X Y, Zhang D W, Li Z and Zhu S L 2017 Phys. Rev. A 95 063616
[14] Lepori L, Fulga I C, Trombettoni A and Burrello M 2016 Phys. Rev. A 94 053633
[15] Roy B, Goswami P and Juricic V 2017 Phys. Rev. B 95 201102(R)
[16] Lai H H 2015 Phys. Rev. B 91 235131
[17] Zhang S X, Jian S K and Yao H 2017 Phys. Rev. B 96 241111(R)
[18] Chen Q and Fiete G A 2016 Phys. Rev. B 93 155125
[19] Park S, Woo S, Mele E J and Min H 2017 Phys. Rev. B 95 161113(R)
[20] Ahn S, Mele E J and Min H 2017 Phys. Rev. B 95 161112(R)
[21] Mukherjee S P and Carbotte J P 2018 Phys. Rev. B 97 045150
[22] Gorbar E V, Miransky V A, Shovkovy I A and Sukhachov P O 2017 Phys. Rev. B 96 155138
[23] Goswami P and Chakravarty S 2011 Phys. Rev. Lett. 107 196803
[24] Syzranov S V, Radzihovsky L and Gurarie V 2015 Phys. Rev. Lett. 114 166601
[25] Syzranov S V, Ostrovsky P M, Gurarie V and Radzihovsky L 2016 Phys. Rev. B 93 155113
[26] Pixley J H, Goswami Pallab and Sarma S Das 2015 Phys. Rev. Lett. 115 076601
[27] Fu B, Zhu W, Shi Q, Li Q, Yang J, and Zhang Z 2017 Phys. Rev. Lett. 118 146401
[28] Sbierski B, Trescher M, Bergholtz E J and Brouwer P W 2017 Phys. Rev. B 95 115104
[29] Bera S, Sau J D and Roy B 2016 Phys. Rev. B 93 201302(R)
[30] Lee P A and Ramakrishnan T V 1985 Rev. Mod. Phys. 57 287
[31] Ioffe A F, and Regel A R 1960 Prog. Semicond. 4 237
[32] Imry Y 2002 Introduction to Mesoscopic Physics (Oxford: Oxford University Press)
[33] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[34] Altland A 2006 Phys. Rev. Lett. 97 236802
[35] Song H D, Sheng D, Wang A Q, Li J G, Yu D P and Liao Z M 2017 Chin. Phys. B 26 037301
[36] Wang L M, Shi S C and Zhang W Y 2013 Chin. Phys. B 22 127201
[37] Nersesyan A A, Tsvelik A M and Wenger F 1994 Phys. Rev. Lett. 72 2628
[38] Nersesyan A A, Tsvelik A M and Wenger F 1995 Nucl. Phys. B 438 561
[39] Aleiner I L, and Efetov K B 2006 Phys. Rev. Lett. 97 236801
[40] Ostrovsky P M, Gornyi I V and Mirlin A D 2006 Phys. Rev. B 74 235443
[41] Zhao P L, Wang J R, Wang A M and Liu G Z 2016 Phys. Rev. B 94 195114
[42] Isobe H, Yang B J, Chubukov A, Schmalian J and Nagaosa N 2016 Phys. Rev. Lett. 116 076803
[43] Banerjee S and Pickett W E 2012 Phys. Rev. B 86 075124
[44] Shon N H and Ando T 1998 J. Phys. Soc. Jpn 67 2421
[45] Akkermans E and Montambaux G 2007 Mesoscopic Physics of Electrons and Photons (Cambridge: Cambridge University Press)
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[4] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[7] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[8] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[9] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[10] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[11] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[15] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
No Suggested Reading articles found!