Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 047104    DOI: 10.1088/1674-1056/ab7746
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT

Min-Han Mi(宓珉瀚)1, Sheng Wu(武盛)1, Ling Yang(杨凌)2, Yun-Long He(何云龙)1, Bin Hou(侯斌)1, Meng Zhang(张濛)1, Li-Xin Guo(郭立新)3, Xiao-Hua Ma(马晓华)1, Yue Hao(郝跃)1
1 Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China;
2 School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
3 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China
Abstract  The etch-stop structure including the in-situ SiN and AlGaN/GaN barrier is proposed for high frequency applications. The etch-stop process is realized by placing an in-situ SiN layer on the top of the thin AlGaN barrier. F-based etching can be self-terminated after removing SiN, leaving the AlGaN barrier in the gate region. With this in-situ SiN and thin barrier etch-stop structure, the short channel effect can be suppressed, meanwhile achieving highly precisely controlled and low damage etching process. The device shows a maximum drain current of 1022 mA/mm, a peak transconductance of 459 mS/mm, and a maximum oscillation frequency (fmax) of 248 GHz.
Keywords:  AlGaN/GaN      in-situ SiN      etch-stop barrier  
Received:  04 February 2020      Revised:  14 February 2020      Accepted manuscript online: 
PACS:  71.55.Eq (III-V semiconductors)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.50.-h (Electronic transport phenomena in thin films)  
Fund: Project supported by the China Postdoctoral Science Foundation (Grant No. 2018M640957), the Fundamental Research Funds for the Central Universities, China (Grant No. 20101196761), the National Natural Science Foundation of China (Grant No. 61904135), and the National Defense Pre-Research Foundation of China (Grant No. 31513020307).
Corresponding Authors:  Min-Han Mi     E-mail:  miminhan@qq.com

Cite this article: 

Min-Han Mi(宓珉瀚), Sheng Wu(武盛), Ling Yang(杨凌), Yun-Long He(何云龙), Bin Hou(侯斌), Meng Zhang(张濛), Li-Xin Guo(郭立新), Xiao-Hua Ma(马晓华), Yue Hao(郝跃) In-situ SiN combined with etch-stop barrier structure for high-frequency AlGaN/GaN HEMT 2020 Chin. Phys. B 29 047104

[1] Wu S B, Gao J F, Wang W B and Zhang J Y 2016 IEEE Trans. Electron. Dev. 63 3882
[2] Yang L, Mi M H, Hou B, Zhang H S, Zhu J J, Zhu Q, Lu Y, Zhang M, He Y L, Chen L X, Zhou X W, Lv L, Ma X H and Hao Y 2017 IEEE Electron. Dev. Lett. 38 1563
[3] Higashiwaki M, Mimura T and Matsui T 2008 Appl. Phys. Express 1 021103
[4] Lee D S, Liu Z H and Palacios T 2014 Jpn. J. Appl. Phys. 53 100212
[5] Fu X C, Lv Y J, Zhang L J, Zhang T, Li X J, Song X B, Zhang Z R, Fang Y L and Feng Z H 2018 Electron. Lett. 54 783
[6] Yue Y Z, Hu Z Y, Guo H J, Li G W, Wang R H and Xing H L 2012 IEEE Electron. Dev. Lett. 33 988
[7] Jessen G H, Fitch R C, Jr, Gillespie J K, Via G, Crespo A, Langley D, Denninghiff D J, Trejo M and Heller E R 2007 IEEE Trans. Electron. Dev. 54 2589
[8] Lin Y K, Noda S, Huang C C, Lo H C, Wu C H, Luc Q H, Chang P C, Hsu H T, Samukawa S and Chang E Y 2017 IEEE Trans. Electron. Dev.. 38 771
[9] Medjdoub F, Zegaoui M, Ducatteau D, Rolland N and Rolland P A 2011 IEEE Electron. Dev. Lett. 32 874
[10] Wang Y, Wang M J, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K J and Shen B 2013 IEEE Electron. Dev. Lett. 34 1370
[11] Huang S, Liu X Y, Wang X H, Kang X W, Zhang J H, Bao Q L, Wei K, Zheng Y K, Zhao C, Gao H W, Sun Q, Zhang Z F and Chen K J 2016 IEEE Electron. Dev. Lett. 37 1617
[12] Huang S, Liu X Y, Wang X H, Kang X W, Zhang J H, Fan J, Shi J Y, Wei K, Zheng Y K, Gao H W, Sun Q, Wang M J, Shen B and Chen K J 2018 IEEE Trans. Electron. Dev. 65 207
[13] Lin S X, Wang M J, Sang F, Tao M, Wen C P, Xie B, Yu M, Wang J Y, Hao Y L, Wu W G, Xu J, Cheng K and Shen B 2016 IEEE Electron. Dev. Lett. 37 377
[14] Lu B, Sun M and Palacios T 2013 IEEE Electron. Dev. Lett. 34 369
[15] Derluyn J, Hove M V, Visalli D, Lorenz A, Marcon D, Srivastava P, Geens K, Sijmus B, Viaene J, Kang X, Das J, Medjdoub F, Cheng K, Degroote S, Leys M, Borghs G and Germain M 2009 IEDM Tech. Dig. p. 157
[16] Mi M H, Ma X H, Yang L, Hou B, Zhu J J, He Y L, Zhang M, Wu S and Hao Y 2017 Appl. Phys. Lett. 111 173502
[17] Zhang Y C, Wei K, Huang S, Wang X H, Zheng Y K, Liu G G, Chen X J, Li Y K and Liu X Y 2018 IEEE Electron. Dev. Lett. 39 727
[18] Hao Y, Yang L, Ma X H, Ma J G, Cao M Y, Pan C Y, Wang C and Zhang J C 2011 IEEE Electron. Dev. Lett. 32 626
[19] Hou B, Ma X H, Yang L, Zhu J J, Zhu Q, Chen L X, Mi M H, Zhang H S, Zhang M, Zhou X W and Hao Y 2017 Appl. Phys. Express 10 076501
[20] Pecheux R, Kabouche R, Okada E, Zegaoui M and Medjdoub F 2018 IEEE Conference (INMMIC) p. 1
[21] Godejohann B J, Ture E, Muller S, Prescher M, Kirste L, Aidam R, Polyakov V, Bruckner P, Breuer S, Kohler K, Quay R and Ambacher O 2017 Phys. Status Solidi B 254 1600715
[22] Higashiwaki M, Mimura T and Matsui T 2007 IEEE Trans. Electron. Dev. 54 1566
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[4] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[5] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[6] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[7] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[8] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[9] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[10] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[11] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[12] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[13] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[14] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[15] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
No Suggested Reading articles found!