Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 027201    DOI: 10.1088/1674-1056/ab671e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Simulation of GaN micro-structured neutron detectors for improving electrical properties

Xin-Lei Geng(耿昕蕾)1, Xiao-Chuan Xia(夏晓川)1, Huo-Lin Huang(黄火林)2, Zhong-Hao Sun(孙仲豪)1, He-Qiu Zhang(张贺秋)1, Xing-Zhu Cui(崔兴柱)3, Xiao-Hua Liang(梁晓华)3, Hong-Wei Liang(梁红伟)1
1 School of Microelectronics, Dalian University of Technology, Dalian 116024, China;
2 School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China
Abstract  Nowadays, the superior detection performance of semiconductor neutron detectors is a challenging task. In this paper, we deal with a novel GaN micro-structured neutron detector (GaN-MSND) and compare three different methods such as the method of modulating the trench depth, the method of introducing dielectric layer and p-type inversion region to improve the width of depletion region (W). It is observed that the intensity of electric field can be modulated by scaling the trench depth. On the other hand, the electron blocking region is formed in the detector enveloped with a dielectric layer. Furthermore, the introducing of p-type inversion region produces new p/n junction, which not only promotes the further expansion of the depletion region but also reduces the intensity of electric field produced by main junction. It can be realized that all these methods can considerably enhance the working voltage as well as W. Of them, the improvement on W of GaN-MSND with the p-type inversion region is the most significant and the value of W could reach 12.8 μm when the carrier concentration of p-type inversion region is 1017 cm-3. Consequently, the value of W is observed to improve 200% for the designed GaN-MSND as compared with that without additional design. This work ensures to the researchers and scientific community the fabrication of GaN-MSND having superior detection limit in the field of intense radiation.
Keywords:  GaN      micro-structured neutron detector      depletion region      electric field  
Received:  01 November 2019      Revised:  29 November 2019      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  29.40.-n (Radiation detectors)  
  29.85.-c (Computer data analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675198, 11875097, 11975257, 61774072, 61574026, and 61971090), the National Key Research and Development Program of China (Grant Nos. 2016YFB0400600 and2016YFB0400601), the Fundamental Research Funds for the Central Universities, China (Grant No. DUT19LK45), the China Postdoctoral Science Foundation (Grant No. 2016M591434), and the Science and Technology Plan of Dalian City, China (Grant No. 2018J12GX060).
Corresponding Authors:  Xiao-Chuan Xia, Hong-Wei Liang     E-mail:  xiaochuan@dlut.edu.cn;hwliang@dlut.edu.cn

Cite this article: 

Xin-Lei Geng(耿昕蕾), Xiao-Chuan Xia(夏晓川), Huo-Lin Huang(黄火林), Zhong-Hao Sun(孙仲豪), He-Qiu Zhang(张贺秋), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华), Hong-Wei Liang(梁红伟) Simulation of GaN micro-structured neutron detectors for improving electrical properties 2020 Chin. Phys. B 29 027201

[1] Ochs T R, Bellinger S L, Fronk R G, Henson L C, Huddleston D E, Lyric Z I, Shultis J K, Smith C T, Sobering T J and McGregor D S 2017 IEEE Trans. Nucl. Sci. 64 1846
[2] McGregor D S, Bellinger S L and Shultis J K 2013 J. Cryst. Growth 379 99
[3] Shao Q, Voss L F, Conway A M, Nikolic R J, Dar M A and Cheung C L 2013 Appl. Phys. Lett. 102 063503
[4] Huang K C, Dahal R, Lu J J Q, Danon Y and Bhat I B 2013 Appl. Phys. Lett. 102 152107
[5] Voss L F, Reinhardt C E, Graff R T, Conway A M, Nikolić R J, Deo N and Cheung C L 2010 J. Electron. Mater. 39 263
[6] Millan J, Godignon P, Perpina X, Perez-Tomas A and Rebollo J 2014 IEEE Trans. Power Electron. 29 2155
[7] Lü L, Zhang J C, Xue J S, Ma X H, Zhang W, Bi Z W, Zhang Y and Hao Y 2012 Chin. Phys. B 21 037104
[8] Mulligan P, Qiu J, Wang J H and Cao L R 2014 IEEE Trans. Nucl. Sci. 61 2040
[9] Shur M 2019 Solid-State Electron. 155 65
[10] Xu K, Wang J F and Ren G Q 2015 Chin. Phys. B 24 066105
[11] Sellin P J and Vaitkus J 2006 Nucl. Instrum. Methods Phys. Res., Sect. A 557 479
[12] Mulligan P, Wang J H and Cao L 2013 Nucl. Instrum. Methods Phys. Res., Sect. A 719 13
[13] Melton A G, Burgett E, Xu T M, Hertel N and Ferguson I T 2012 Physica Status Solidi 9 957
[14] Atsumi K, Inoue Y, Mimura H, Aoki T and Nakano T 2014 APL Mater. 2 032106
[15] Wang J H, Mulligan P, Brillson L and Cao L R 2015 Appl. Phys. Rev. 2 031102
[16] Morkoc H 2001 Mater. Sci. Eng. R-Rep. 33 135
[17] Vaitkus J, Cunningham W, Gaubas E, Rahman M, Sakai S, Smith K M and Wang T 2003 Nucl. Instrum. Methods Phys. Res., Sect. A 509 60
[18] Owens A, Barnes A, Farley R A, Germain M and Sellin P J 2012 Nucl. Instrum. Methods Phys. Res., Sect. A 695 303
[19] Nikolic R J, Cheung C L, Reinhardt C E and Wang T F 2005 Optoelectronic Devices: Physics, Fabrication, and Application II, 24 October, 2005, Boston, USA, p. 36
[20] Xu Q, Mulligan P, Wang J H, Chuirazzi W and Cao L 2017 Nucl. Instrum. Methods Phys. Res., Sect. A 849 11
[21] Wang G, Fu K, Yao C S, Su D, Zhang G G, Wang J Y and Lu M 2012 Nucl. Instrum. Methods Phys. Res., Sect. A 663 10
[22] Ye X, Xia X C, Liang H W, Li Z, Zhang H Q, Du G T, Cui X Z and Liang X H 2018 Chin. Phys. B 27 087304
[23] Lu M, Zhang G G, Fu K and Yu G H 2010 Chin. Phys. Lett. 27 052901
[24] Sze S M and Ng K K 2006 Physics of semiconductor devices, 3rd edn. (Hoboken: John Wiley & Sons) p. 83
[25] Zhu Z F, Zhang H Q, Liang H W, Tang B, Peng X C, Liu J X, Yang C, Xia X C, Tao P C, Shen R S, Zou J J and Du G T 2018 Nucl. Instrum. Methods Phys. Res., Sect. A 893 39
[26] Xie G, Xu E, Hashemi N, Zhang B, Fu F Y and Ng W T 2012 Chin. Phys. B 21 086105
[27] Truyen N X, Taoka N, Ohta A, Makihara K, Yamada H, Takahashi T, Ikeda M, Shimizu M and Miyazaki S 2018 Jpn. J. Appl. Phys. 57 04FG11
[28] Ohta A, Truyen N X, Fujimura N, Ikeda M, Makihara K and Miyazaki S 2018 Jpn. J. Appl. Phys. 57 06KA08
[29] Cho Y J, Chung K B and Chang H S 2018 Thin Solid Films 649 57
[30] Jackson C M, Arehart A R, Cinkilic E, McSkimming B, Speck J S and Ringel S A 2013 J. Appl. Phys. 113 204505
[31] Biswas D, Torii N, Fujita H, Yoshida T, Kubo T and Egawa T 2019 Semicond. Sci. Technol. 34 055014
[32] Udrea F, Deboy G and Fujihira T 2017 IEEE Trans. Electron Dev. 64 713
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[13] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[14] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[15] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
No Suggested Reading articles found!