CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height |
Zhong-Xu Wang(王中旭)1, Lin Du(杜林)2, Jun-Wei Liu(刘俊伟)1, Ying Wang(王颖)3, Yun Jiang(江芸)2, Si-Wei Ji(季思蔚)2, Shi-Wei Dong(董士伟)3, Wei-Wei Chen(陈伟伟)3, Xiao-Hong Tan(谭骁洪)4, Jin-Long Li(李金龙)4, Xiao-Jun Li(李小军)3, Sheng-Lei Zhao(赵胜雷)1, Jin-Cheng Zhang(张进成)1, Yue Hao(郝跃)1 |
1 Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; 2 Shanghai Precision Metrology and Testing Research Institute, Shanghai 201109, China; 3 China Academy of Space Technology(Xi'an), Xi'an 710000, China; 4 Sichuan Institute of Solid-State Circuits, CETC, Chongqing 400060, China |
|
|
Abstract A large gate metal height technique is proposed to enhance breakdown voltage in GaN channel and AlGaN channel high-electron-mobility-transistors (HEMTs). For GaN channel HEMTs with gate-drain spacing LGD=2.5 μm, the breakdown voltage VBR increases from 518 V to 582 V by increasing gate metal height h from 0.2 μm to 0.4 μm. For GaN channel HEMTs with LGD=7 μm, VBR increases from 953 V to 1310 V by increasing h from 0.8 μm to 1.6 μm. The breakdown voltage enhancement results from the increase of the gate sidewall capacitance and depletion region extension. For Al0.4Ga0.6N channel HEMT with LGD=7 μm, VBR increases from 1535 V to 1763 V by increasing h from 0.8 μm to 1.6 μm, resulting in a high average breakdown electric field of 2.51 MV/cm. Simulation and analysis indicate that the high gate metal height is an effective method to enhance breakdown voltage in GaN-based HEMTs, and this method can be utilized in all the lateral semiconductor devices.
|
Received: 04 November 2019
Revised: 05 December 2019
Accepted manuscript online:
|
PACS:
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
Fund: Project supported by the National Key Science & Technology Special Project of China (Grant No. 2017ZX01001301), the National Key Research and Development Program of China (Grant No. 2016YFB0400100), and the National Natural Science Foundation of China (Grant Nos. 51777168 and 61801374). |
Corresponding Authors:
Sheng-Lei Zhao, Jin-Cheng Zhang
E-mail: slzhao@xidian.edu.cn;jchzhang@xidian.edu.cn
|
Cite this article:
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃) Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height 2020 Chin. Phys. B 29 027301
|
[1] |
Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron Device Lett. 25 117
|
[2] |
Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
|
[3] |
Imada T, Kanamura M and Kikkawa T 2010 Proc. IEEE Power Electron. Conf. 1027
|
[4] |
Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron Device Lett. 21 421
|
[5] |
Treidel E B, Hilt O, Brunner F, Würfl J and Tränkle G 2008 IEEE Trans. Electron. Devices 55 3354
|
[6] |
Wang M J and Chen K J 2011 IEEE Trans. Electron. Devices 58 460
|
[7] |
Lee H S, Piedra D, Sun M, Gao X, Guo S and Palacios T 2012 IEEE Electron Device Lett. 33 982
|
[8] |
Nanjo T, Takeuchi M, Suita M, Oishi T, Abe Y, Tokuda Y and Aoyagi Y 2008 Appl. Phys. Lett. 92 263502
|
[9] |
Nanjo T, Imai A, Suzuki Y, Abe Y, Oishi T, Suita M, Yagyu E and Aoyagi Y 2013 IEEE Trans. Electron. Devices 60 1046
|
[10] |
Karmalkar S and Mishra U K 2001 IEEE Trans. Electron. Devices 48 1515
|
[11] |
Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Device Lett. 25 161
|
[12] |
Hanawa H, Onodera H, Nakajima A and Horio K 2014 IEEE Trans. Electron. Devices 61 769
|
[13] |
Ma X H, Yu H Y, Quan S, Yang L Y, Pan C Y, Yang L, Wang H, Zhang J C and Hao Y 2011 Chin. Phys. B 20 027303
|
[14] |
Lian Y W, Lin Y S, Lu H C, Huang Y C and Hsu S S H 2012 IEEE Electron Device Lett. 33 973
|
[15] |
Wang Y, Wang M, Xie B, Wen C P, Wang J, Hao Y, Wu W, Chen K J and Shen B 2013 IEEE Electron Device Lett. 34 1370
|
[16] |
Horio K, Yonemoto K, Takayanagi H and Nakano H 2005 J. Appl. Phys. 98 124502
|
[17] |
Kunihiro K, Kasahara K, Takahashi Y and Ohno Y 1999 IEEE Electron Device Lett. 20 608
|
[18] |
Xiao M, Zhang J, Duan X, Zhang W, Shan H, Ning J and Hao Y 2018 IEEE Electron Device Lett. 39 1149
|
[19] |
Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Device Lett. 27 713
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|