Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077103    DOI: 10.1088/1674-1056/27/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anisotropic elastic properties and ideal uniaxial compressive strength of TiB2 from first principles calculations

Min Sun(孙敏)1, Chong-Yu Wang(王崇愚)2, Ji-Ping Liu(刘吉平)1
1 School of Material Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
2 Department of Physics, Tsinghua University, Beijing 100084, China
Abstract  The structural, anisotropic elastic properties and the ideal compressive and tensile strengths of titanium diboride (TiB2) were investigated using first-principles calculations based on density functional theory. The stress-strain relationships of TiB2 under <1010>, <1210>, and <0001> compressive loads were calculated. Our results showed that the ideal uniaxial compressive strengths are |σ<1210>|=142.96 GPa,|σ<0001>|=188.75 GPa, and |σ<1010>|=245.33 GPa, at strains-0.16,-0.32, and-0.24, respectively. The variational trend is just the opposite to that of the ideal tensile strength with σ<1010>=44.13 GPa, σ<0001>=47.03 GPa, and σ<1210>=56.09 GPa, at strains 0.14, 0.28, and 0.22, respectively. Furthermore, it was found that TiB2 is much stronger under compression than in tension. The ratios of the ideal compressive to tensile strengths are 5.56, 2.55, and 4.01 for crystallographic directions <1010>, <1210>, and <0001>, respectively. The present results are in excellent agreement with the most recent experimental data and should be helpful to the understanding of the compressive property of TiB2.
Keywords:  ideal compressive strength      electronic structure      elastic property      first principles calculation  
Received:  15 June 2018      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.15.-m (Methods of electronic structure calculations)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  62.20.-x (Mechanical properties of solids)  
Corresponding Authors:  Chong-Yu Wang, Ji-Ping Liu     E-mail:  cywang@mail.tsinghua.edu.cn;ilphysics@163.com

Cite this article: 

Min Sun(孙敏), Chong-Yu Wang(王崇愚), Ji-Ping Liu(刘吉平) Anisotropic elastic properties and ideal uniaxial compressive strength of TiB2 from first principles calculations 2018 Chin. Phys. B 27 077103

[1] Cheng T B and Li W G 2015 J. Am. Ceram. Soc. 98 190
[2] Xiang H M, Feng Z H, Li Z P and Zhou Y C 2015 J. Appl. Phys. 117 225902
[3] Sun L, Gao Y M, Xiao B, Li Y F and Wang G L 2013 J. Alloy Compd. 579 457
[4] Pokluda J, Cerný, M, Šob M and Umeno Y 2015 Prog. Mater. Sci. 73 127
[5] Price D L, Cooper B R and Wills J M 1992 Phys. Rev. B 46 11368
[6] Wen M R and W C Y 2018 Phys. Rev. B 97 024101
[7] Luo X G, Liu Z Y and Xu B 2010 J. Phys. Chem. C 114 17851
[8] Zhou Y C, Xiang H M and Feng Z H 2015 J. Mater. Sci. Technol. 31 285
[9] Zhang X H, Luo X G, Li J P, Hu P and Han J C 2010 Scr. Mater. 62 625
[10] Cheng T B and Li W G 2015 J. Am. Ceram. Soc. 98 190
[11] Saai A, Wang Z H, Pezzotta M, Friis J, Ratvik A P and Vullum P E 2018 TMS Annu. Meeting & Exhibition TMS 2018$:Light Metals 2018 1329
[12] Munro R G 2000 J. Res. Natl. Stand. Technol. 105 709
[13] Zhang Y, Fukuoka K, Kikuchi M, Kodama M, Shibata K and Mashimo T 2006 J. Appl. Phys. 100 113536
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[16] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[17] Milman V and Warren M C 2001 J. Phys.:Condens. Matter 13 241
[18] Reshak A H and Jamal M 2012 J. Alloy Compd. 543 147
[19] Roundy D, Krenn C R, Cohen M L and Morris J W 1999 Phys. Rev. Lett. 82 2713
[20] Zhang Y, Sun H and Chen C F 2004 Phys. Rev. Lett. 93 195504
[21] Waskowska A, Gerward L, Olsen J S, Babu K R, Vaitheeswaran G, Kanchana V, Svane A, Filipov V B, Levchenko G and Lyaschenko A 2011 Acta Mater. 59 4886
[22] Spoor P S, Maynard J D, Pan M J, Green D J, Hellmann J R and Tanaka T 1997 Appl. Phys. Lett. 70 1959
[23] Mizuno M, Tanaka I and Adachi H 1999 Phys. Rev. B 59 15033
[24] Born M and Huang K 1954 Theory of Crystal Lattices (London:Oxford University Press)
[25] Okamoto N L, Kusakari M and Tanaka K 2010 Acta Mater. 58 76
[26] Panda K B and Chandran K S R 2006 Comput. Mater. Sci. 35 134
[27] Chung D H and Buessem W R 1967 J. Appl. Phys. 38
[28] Voigt W 1928 Lehrbuch der Kristallophysic, Leipaig
[29] Reuss A and Angew Z 1929 Math. Mech. 9 49
[30] Hill R 1952 Proc. Phys. Soc. A 65 349
[31] Chen X Q, Niu H Y, Li D Z and Li Y Y 1920 Intermetallics 11 1275
[32] Kumar R, Mishra M C, Sharma B K, Sharma V, Lowther J E, Vyas V and Sharma G 2012 Comput. Mater. Sci. 61 150
[33] Zhang X, Luo X, Li J, Hu P and Han J 2010 Scr. Mater. 62 625
[34] Pugh S F 1954 Philos. Mag. 45 823
[35] Xu J H and Freeman A J 1990 Phys. Rev. B 41 12553
[36] Vajeeston P, Ravindran P, Ravi C and Asokamani R 2001 Phys. Rev. B 63 045115
[37] Wang Y J and Wang C Y 2009 Appl. Phys. Lett. 94 261909
[38] Martin D, Ulf J and Johanna R 2015 J. Phys.:Condens. Matter 27 435702
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[4] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[5] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[6] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[7] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[8] High-throughput computational material screening of the cycloalkane-based two-dimensional Dion—Jacobson halide perovskites for optoelectronics
Guoqi Zhao(赵国琪), Jiahao Xie(颉家豪), Kun Zhou(周琨), Bangyu Xing(邢邦昱), Xinjiang Wang(王新江), Fuyu Tian(田伏钰), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(3): 037104.
[9] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[10] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[11] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[12] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[13] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[14] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[15] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
No Suggested Reading articles found!