Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 077102    DOI: 10.1088/1674-1056/27/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Robustness of coherence between two quantum dots mediated by Majorana fermions

Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生)
Mathematics and Physics Department, North China Electric Power University, Beijing 102206, China
Abstract  We study three important measurements used to identify the quantum correlations between two quantum dots (QDs) mediated by a pair of Majorana fermions (MFs) in a superconducting quantum wire. We find that, in addition to the quantum discord, the robustness of coherence (ROC) can also be considered as a quantity to measure the quantum correlation for the special case where the quantum entanglement is vanishing. For comparison, we study the quantum correlation between two QDs mediated by other fermions, i.e., regular fermions and superconducting fermions. We find that, when the quantum entanglement is not vanishing, i.e., the concurrence is finite, the detailed difference between the concurrence and ROC can be considered as an important implication for the existence of MFs.
Keywords:  quantum coherence      Majorana fermion      non-locality  
Received:  05 December 2017      Revised:  14 April 2018      Accepted manuscript online: 
PACS:  71.10.Pm (Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.))  
  74.90.+n (Other topics in superconductivity)  
  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11504106, 11247308, and 11447167) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. 2018MS049 and 2018MS057).
Corresponding Authors:  Liang Chen     E-mail:  slchern@ncepu.edu.cn

Cite this article: 

Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生) Robustness of coherence between two quantum dots mediated by Majorana fermions 2018 Chin. Phys. B 27 077102

[1] Majorana E 1937 Nuovo Cim 14 171
[2] Kitaev A Y 2001 Physics-Uspekhi 44 131
[3] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083
[4] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[5] Read N and Green D 2000 Phys. Rev. B 61 10267
[6] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[7] Das Sarma S, Nayak C and Tewari S 2006 Phys. Rev. B 73 220502
[8] Gurarie V and Radzihovsky L 2007 Phys. Rev. B 75 212509
[9] Tewari S, Zhang C, Das Sarma S, Nayak C and Lee D H 2008 Phys. Rev. Lett. 100 027001
[10] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407
[11] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[12] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
[13] Das A, Ronen Y, Most Y, Oreg Y, Heiblum M and Shtrikman H 2012 Nat. Phys. 8 887
[14] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[15] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[16] Oreg Y, Refael G and von Oppen F 2010 Phys. Rev. Lett. 105 177002
[17] Quay C H L, Hughes T L, Sulpizio J A, Pfeiffer L N, Baldwin K W, West K W, Goldhaber-Gordon D and de Picciotto R 2010 Nat. Phys. 6 336
[18] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[19] Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (10th anniversary Edn.) (Cambridge:Cambridge University Press) pp.~571——581
[20] Wang Z, Hu X Y, Liang Q F and Hu X 2013 Phys. Rev. B 87 214513
[21] Wang P, Cao Y, Gong M, Xiong G and Li X Q 2013 Europhys. Lett. 103 57016
[22] Li J, Yu T, Lin H Q and You J Q 2014 Sci. Rep. 4 4930
[23] Shang E M, Pan Y M, Shao L B and Wang B G 2014 Chin. Phys. B 23 057201
[24] Shi Z C, Wang W and Yi X X 2016 New J. Phys. 18 023005
[25] Xiong Y 2016 Chin. Phys. Lett. 33 057402
[26] Wu B H, Cheng X, Wang C R and Gong W J 2014 Chin. Phys. Lett. 31 037306
[27] Zhou Y and Guo J H 2015 Acta Phys. Sin. 64 167302 (in Chinese)
[28] Zhang D P and Tian G S 2015 Chin. Phys. B 24 080401
[29] Deng M X, Zheng S H, Yang M, Hu L B and Wang R Q 2015 Chin. Phys. B 24 037302
[30] Wu B H, Feng X Y, Wang C, Xu X F and Wang C R 2016 Chin. Phys. Lett. 33 017401
[31] Shao L B, Wang Z D, Shen R, Sheng L, Wang B G and Xing D Y 2017 Chin. Phys. Lett. 34 067401
[32] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[33] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[34] Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107
[35] Bolech C J and Demler E 2007 Phys. Rev. Lett. 98 237002
[36] Sun H B and Milburn G J 1999 Phys. Rev. B 59 10748
[37] Vandenberghe L and Boyd S 1996 SIAM Review 38 49
[38] MATLAB Release 2016a (The MathWorks, Inc., Natick, MA, United States).
[39] Grant M and Boyd S 2014 CVX:MATLAB Software for Disciplined Convex Programming, Version 2.1, http://cvxr.com/cvx.
[40] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[41] Rungta P, Bužek V, Caves C M, Hillery M and Milburn G J 2001 Phys. Rev. A 64 042315
[42] Henderson L and Vedral L 2001 J. Phys. A:Math. Gen. 34 6899
[43] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Majorana fermions induced fast- and slow-light in a hybrid semiconducting nanowire/superconductor device
Hua-Jun Chen(陈华俊), Peng-Jie Zhu(朱鹏杰), Yong-Lei Chen(陈咏雷), and Bao-Cheng Hou(侯宝成). Chin. Phys. B, 2022, 31(2): 027802.
[4] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[5] Negative tunnel magnetoresistance in a quantum dot induced by interplay of a Majorana fermion and thermal-driven ferromagnetic leads
Peng-Bin Niu(牛鹏斌), Bo-Xiang Cui(崔博翔), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(9): 097401.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[8] Realization of arbitrary two-qubit quantum gates based on chiral Majorana fermions
Qing Yan(闫青) and Qing-Feng Sun(孙庆丰). Chin. Phys. B, 2021, 30(4): 040303.
[9] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[10] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[11] Realizing Majorana fermion modes in the Kitaev model
Lu Yang(杨露), Jia-Xing Zhang(张佳星), Shuang Liang(梁爽), Wei Chen(陈薇), and Qiang-Hua Wang(王强华). Chin. Phys. B, 2021, 30(11): 117504.
[12] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[13] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[14] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[15] Phase diagram of interacting fermionic two-leg ladder with pair hopping
Wan-Li Liu(刘万里), Tian-Zhong Yuan(原天忠), Zhi Lin(林志), Wei Yan(闫伟). Chin. Phys. B, 2019, 28(2): 020303.
No Suggested Reading articles found!