CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetization dynamics of mixed Co-Au chains on Cu(110) substrate: Combined ab initio and kinetic Monte Carlo study |
K. M. Tsysar, S. V. Kolesnikov, A. M. Saletsky |
Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russian Federation |
|
|
Abstract We present an investigation of the one-dimensional ferromagnetism in Au-Co nanowires deposited on the Cu(110) surface. By using the density functional theory, the influence of the nonmagnetic copper substrate Cu(110) on the magnetic properties of the bimetallic Au-Co nanowires is studied. The results show the emergence of magnetic anisotropy in the supported Au-Co nanowires. The magnetic anisotropy energy has the same order of magnitude as the exchange interaction energy between Co atoms in the wire. Our electronic structure calculation reveals the emergence of new hybridized bands between Au and Co atoms and surface Cu atoms. The Curie temperature of the Au-Co wires is calculated by means of kinetic Monte Carlo simulation. The strong size effect of the Curie temperature is demonstrated.
|
Received: 12 January 2015
Revised: 25 March 2015
Accepted manuscript online:
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
75.75.-c
|
(Magnetic properties of nanostructures)
|
|
75.40.Mg
|
(Numerical simulation studies)
|
|
Fund: Project supported by the Russian Foundation of Basic Researches. |
Corresponding Authors:
S. V. Kolesnikov
E-mail: kolesnikov@physics.msu.ru
|
Cite this article:
K. M. Tsysar, S. V. Kolesnikov, A. M. Saletsky Magnetization dynamics of mixed Co-Au chains on Cu(110) substrate: Combined ab initio and kinetic Monte Carlo study 2015 Chin. Phys. B 24 097302
|
[1] |
Csonka S, Halbritter A, Mihály G, Shklyarevskii O I, Speller S and van Kempen H 2004 Phys. Rev. Lett. 93 016802
|
[2] |
Klavsyuk A, Kolesnikov S, Gainullin I and Saletsky A 2011 JETP Lett. 93 530
|
[3] |
Csonka S, Halbritter A and Mihály G 2006 Phys. Rev. B 73 075405
|
[4] |
Tsysar K M, Bazhanov D I, Saletsky A M, Brovko O O and Stepanyuk V S 2011 Phys. Rev. B 84 085457
|
[5] |
Egle S, Bacca C, Pernau H F, Huefner M, Hinzke D, Nowak U and Scheer E 2010 Phys. Rev. B 81 134402
|
[6] |
Bettini J, Sato F, Coura P, Dantas S, Galvao D and Ugarte D 2006 Nat. Nanotechnol. 1 182
|
[7] |
Smelova E, Tsysar' K, Bazhanov D and Saletsky A 2011 JETP Lett. 93 129
|
[8] |
Nabika H, Akamatsu K, Mizuhata M, Kajinami A and Deki S 2002 J. Mater. Chem. 12 2408
|
[9] |
Klavsyuk A, Kolesnikov S, Gainullin I and Saletsky A 2012 Euro. Phys. J. B 85 331
|
[10] |
Klavsyuk A, Kolesnikov S, Smelova E and Saletsky A 2011 Physics of the Solid State 53 2356
|
[11] |
Tsysar K M, Bazhanov D I, Smelova EMand Saletsky AM2014 Phys. Stat. Sol. (b) 251 871
|
[12] |
Kolesnikov S V, Kolesnikova I N, Klavsyuk A L and Saletsky A M 2013 Europhys. Lett. 103 48002
|
[13] |
Kolesnikov S, Klavsyuk A and Saletsky A 2013 Physics of the Solid State 55 1950
|
[14] |
Stepanyuk O V, Negulyaev N N, Saletsky A M and Hergert W 2008 Phys. Rev. B 78 113406
|
[15] |
Pick S, Ignatiev P, Klavsyuk A, Hergert W, Stepanyuk V and Bruno P 2007 J. Phys.: Condens. Matter 19 446001
|
[16] |
Andreev P A and Kuz'menkov L S 2014 Euro. Phys. J. D 68 270
|
[17] |
Tsysar K M, Bazhanov D I, Smelova EMand Saletsky AM2012 Appl. Phys. Lett. 101 043108
|
[18] |
Wedekind S, Donati F, Oka H, Rodary G, Sander D and Kirschner J 2012 Surface Science 606 1577
|
[19] |
Ignatiev P A, Negulyaev N N, Smirnov A S, Niebergall L, Saletsky A M and Stepanyuk V S 2009 Phys. Rev. B 80 165408
|
[20] |
Hafner J, Kresse G, Eichler A, Lorentz R, Hirschl R and Marsman M 1999 VASP Workshop
|
[21] |
Kohn W 1999 Rev. Mod. Phys. 71 1253
|
[22] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[23] |
Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
|
[24] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[25] |
Feynman R P 1939 Phys. Rev. 56 340
|
[26] |
Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
|
[27] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[28] |
Li Y and Liu B G 2006 Phys. Rev. B 73 174418
|
[29] |
Gambardella P, Dallmeyer A, Maiti K, Malagoli M C, Eberhardt W, Kern K and Carbone C 2002 Nature 416 301
|
[30] |
Glauber R J 1963 Journal of Matematical Physics 4 294
|
[31] |
Fichthorn K A and Weinberg W H 1991 The Journal of Chemical Physics 95 1090
|
[32] |
Tsysar' K, Smelova E, Bazhanov D and Saletsky A 2011 JETP Lett. 94 228
|
[33] |
Błoński P, Lehnert A, Dennler S, Rusponi S, Etzkorn M, Moulas G, Bencok P, Gambardella P, Brune H and Hafner J 2010 Phys. Rev. B 81 104426
|
[34] |
Gimbert F and Calmels L 2012 Phys. Rev. B 86 184407
|
[35] |
Landau L D and Lifshitz E M 1963 Electrodynamics of Continuous Media. Volume 8 of Course of Theoretical Physics (2nd Edn.) (London: Pergamon Press) pp. 146–149
|
[36] |
Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|