Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097303    DOI: 10.1088/1674-1056/24/9/097303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of dry-etching damage on the electrical properties of an AlGaN/GaN Schottky barrier diode with recessed anode

Zhong Jian (钟健)a, Yao Yao (姚尧)a, Zheng Yue (郑越)a, Yang Fan (杨帆)a, Ni Yi-Qiang (倪毅强)a, He Zhi-Yuan (贺致远)a, Shen Zhen (沈震)a, Zhou Gui-Lin (周桂林)a, Zhou De-Qiu (周德秋)a, Wu Zhi-Sheng (吴志盛)a, Zhang Bai-Jun (张伯君)b, Liu Yang (刘扬)a
a School of Physics and Engineering, Institute of Power Electronics and Control Technology, Sun Yat-Sen University, Guangzhou 510275, China;
b State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  The influences of dry-etching damage on the electrical properties of an AlGaN/GaN Schottky barrier diode with ICP-recessed anode was investigated for the first time. It was found that the turn-on voltage is decreased with the increase of dry-etching power. Furthermore, the leakage currents in the reverse bias region above pinch-off voltage rise as radio frequency (RF) power increases, while below pinch-off voltage, leakage currents tend to be independent of RF power. Based on detailed current-voltage-temperature (I-V-T) measurements, the barrier height of thermionic-field emission (TFE) from GaN is lowered as RF power increases, which results in early conduction. The increase of leakage current can be explained by Frenkel-Poole (FP) emission that higher dry-etching damage in the sidewall leads to the higher tunneling current, while below pinch-off voltage, the leakage is only related to the AlGaN surface, which is independent of RF power.
Keywords:  AlGaN/GaN Schottky barrier diodes      recessed anode      etching damage      tunneling  
Received:  03 March 2015      Revised:  13 April 2015      Accepted manuscript online: 
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  81.05.Ea (III-V semiconductors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51177175 and 61274039), the National Basic Research Program of China (Grant Nos. 2010CB923200 and 2011CB301903), the Ph. D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).
Corresponding Authors:  Liu Yang     E-mail:  liuy69@mail.sysu.edu.cn

Cite this article: 

Zhong Jian (钟健), Yao Yao (姚尧), Zheng Yue (郑越), Yang Fan (杨帆), Ni Yi-Qiang (倪毅强), He Zhi-Yuan (贺致远), Shen Zhen (沈震), Zhou Gui-Lin (周桂林), Zhou De-Qiu (周德秋), Wu Zhi-Sheng (吴志盛), Zhang Bai-Jun (张伯君), Liu Yang (刘扬) Influence of dry-etching damage on the electrical properties of an AlGaN/GaN Schottky barrier diode with recessed anode 2015 Chin. Phys. B 24 097303

[1] Jiang C, Lu H, Chen D J, Ren F F, Zhang R and Zheng Y D 2014 Chin. Phys. B 23 97308
[2] Tang C, Xie G, Zhang L, Guo Q, Wang T and Sheng K 2013 Chin. Phys. B 22 106107
[3] Chen W, Wong K Y, Huang W and Chen K J 2008 Appl. Phys. Lett. 92 253501
[4] Yoshida S, Li J, Ikeda N and Hataya K 2005 Phys. Status Solidi C 2 2602
[5] Wang Z G, Chen W J, Zhang B and Li Z J 2012 Chin. Phys. Lett. 29 107202
[6] Tokuda H, Watanabe F, Syahiman A, Kuzuhara M and Fujiwara T 2011 IWPT 2
[7] Ha M W, Lee S C, Choi Y H, Kim S S, Yun C M and Han M K 2006 Superlattices Microstruct. 40 567
[8] Treidel E B, Hilt O, Wentzel A, Wuerfl J and Traenkle G 2013 Physica Status Solidi C 10 849
[9] Yao Y, Zhong J and Zheng Y 2015 Jpn. J. Appl. Phys. 54 011001
[10] Shul R, McClellan G B and Casalnuovo D J 1996 Appl. Phys. Lett. 69 1119
[11] Hashizume T, Kotani J and Hasegawa H 2004 Appl. Phys. Lett. 84 4884
[12] Kotani J, Hasegawa H and Hashizume T 2004 Appl. Surf. Sci. 237 213
[13] Choi K J, Jang H W and Lee J L 2003 Appl. Phys. Lett. 82 1233
[14] Lan W H, Huang K C and Huang K F 2006 Solid-State Electron. 50 1677
[15] Zhang H, Miller E J and Yu E T 2006 J. Appl. Phys. 99 023703
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Concerted versus stepwise mechanisms of cyclic proton transfer: Experiments, simulations, and current challenges
Yi-Han Cheng(程奕涵), Yu-Cheng Zhu(朱禹丞), Xin-Zheng Li(李新征), and Wei Fang(方为). Chin. Phys. B, 2023, 32(1): 018201.
[4] Polyhedral silver clusters as single molecule ammonia sensor based on charge transfer-induced plasmon enhancement
Jiu-Huan Chen(陈九环) and Xin-Lu Cheng(程新路). Chin. Phys. B, 2023, 32(1): 017302.
[5] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[6] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[7] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[8] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[9] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[10] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[11] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[12] Anisotropic refraction and valley-spin-dependent anomalous Klein tunneling in a 1T'-MoS2-based p-n junction
Fenghua Qi(戚凤华) and Xingfei Zhou(周兴飞). Chin. Phys. B, 2022, 31(7): 077301.
[13] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[14] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[15] Robustness of the unidirectional stripe order in the kagome superconductor CsV3Sb5
Bin Hu(胡彬), Yuhan Ye(耶郁晗), Zihao Huang(黄子豪), Xianghe Han(韩相和), Zhen Zhao(赵振),Haitao Yang(杨海涛), Hui Chen(陈辉), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(5): 058102.
No Suggested Reading articles found!