Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 097301    DOI: 10.1088/1674-1056/24/9/097301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Landau level transitions in InAs/AlSb/GaSb quantum wells

Wu Xiao-Guang (吴晓光)a, Pang Mi (庞蜜)b
a State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
b Department of Applied Physics, Xi'an University of Technology, Xi'an 710054, China
Abstract  The electronic structure of InAs/AlSb/GaSb quantum wells embedded in AlSb barriers and in the presence of a perpendicular magnetic field is studied theoretically within the 14-band k·p approach without making the axial approximation. At zero magnetic field, for a quantum well with a wide InAs layer and a wide GaSb layer, the energy of an electron-like subband can be lower than the energy of hole-like subbands. As the strength of the magnetic field increases, the Landau levels of this electron-like subband grow in energy and intersect the Landau levels of the hole-like subbands. The electron-hole hybridization leads to a series of anti-crossing splittings of the Landau levels. The magnetic field dependence of some dominant transitions is shown with their corresponding initial-states and final-states indicated. The dominant transitions at high fields can be roughly viewed as two spin-split Landau level transitions with many electron-hole hybridization-induced splittings. When the magnetic field is tilted, the electron-like Landau level transitions show additional anti-crossing splittings due to the subband-Landau level coupling.
Keywords:  Landau level      quantum well      electron-hole hybridization  
Received:  13 March 2015      Revised:  21 April 2015      Accepted manuscript online: 
PACS:  73.21.Fg (Quantum wells)  
  78.20.Ls (Magneto-optical effects)  
  78.30.Fs (III-V and II-VI semiconductors)  
  78.67.De (Quantum wells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61076092 and 61290303).
Corresponding Authors:  Wu Xiao-Guang     E-mail:  xgwu@red.semi.ac.cn

Cite this article: 

Wu Xiao-Guang (吴晓光), Pang Mi (庞蜜) Landau level transitions in InAs/AlSb/GaSb quantum wells 2015 Chin. Phys. B 24 097301

[1] Heitmann D, Ziesmann M and Chang L L 1986 Phys. Rev. B 34 7463
[2] Kono J, McCombe B D, Cheng J P, Lo I, Mitchel W C and Stutz C E 1994 Phys. Rev. B 50 12242
[3] Yang M J, Yang C H, Bennett B R and Shanabrook B V 1997 Phys. Rev. Lett. 78 4613
[4] Kono J, McCombe B D, Cheng J P, Lo I, Mitchel W C and Stutz C E 1997 Phys. Rev. B 55 1617
[5] Lakrimi M, Khym S, Nicholas R J, Symons D M, Peeters F M, Mason N J and Walker P J 1997 Phys. Rev. Lett. 79 3034
[6] Vasilyev Y, Suchalkin S, von Klitzing K, Meltser B, Ivanov S and Kop'ev P 1999 Phys. Rev. B 60 10636
[7] Marlow T P, Cooper L J, Arnone D D, Patel N K, Whittaker D M, Linfield E H, Ritchie D A and Pepper M 1999 Phys. Rev. Lett. 82 2362
[8] Suzuki K, Miyashita S and Hirayama Y 2003 Phys. Rev. B 67 195319
[9] Suzuki K, Takashina K, Miyashita S and Hirayama Y 2004 Phys. Rev. Lett. 93 016803
[10] Petchsingh C, Nicholas R J, Takashina K, Mason N J and Zeman J 2004 Phys. Rev. B 70 155306
[11] Tung L C, Folkes P A, Gumbs G, Xu W and Wang Y J 2010 Phys. Rev. B 82 115305
[12] Knez I, Du R R and Sullivan G 2011 Phys. Rev. Lett. 107 136603
[13] Knez I, Du R R and Sullivan G 2012 Phys. Rev. Lett. 109 186603
[14] Altarelli M 1983 Phys. Rev. B 28 842
[15] Chiang J C, Tsay S F, Chau Z M and Lo I 1996 Phys. Rev. Lett. 77 2053
[16] Nilsson K, Zakharova A, Lapushkin I, Yen S T and Chao K A 2006 Phys. Rev. B 74 075308
[17] Nilsson K, Zakharova A, Semenikhin I and Chao K A 2007 Phys. Rev. B 75 205318
[18] Orlita M, Masztalerz K, Faugeras C, Potemski M, Novik E G, Brüne C, Buhmann H and Molenkamp L W 2011 Phys. Rev. B 83 115307
[19] Zholudev M, Teppe F, Orlita M, Consejo C, Torres J, Dyakonova N, Czapkiewicz M, Wróbel J, Grabecki G, Mikhailov N, Dvoretskii S, Ikonnikov A, Spirin K, Aleshkin V, Gavrilenko V and Knap W 2012 Phys. Rev. B 86 205420
[20] Pang M and Wu X G 2013 Phys. Rev. B 88 235309
[21] Foreman B A 2007 Phys. Rev. B 75 235331
[22] Eissfeller T and Vogl P 2011 Phys. Rev. B 84 195122
[23] Winkler R 2003 Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin: Springer)
[24] Bahder T B 1990 Phys. Rev. B 41 11992
[25] Bahder T B 1992 Phys. Rev. B 46 E9913
[26] Burt M G 1992 J. Phys. Condens. Matter 4 6651
[27] Foreman B A 1993 Phys. Rev. B 48 4964
[28] Smith D L and Mailhiot C 1990 Rev. Mod. Phys. 62 173
[29] Pfeffer P and Zawadzki W 1990 Phys. Rev. B 41 1561
[30] Pfeffer P and Zawadzki W 1996 Phys. Rev. B 53 12813
[31] Mayer H and Rössler U 1991 Phys. Rev. B 44 9048
[32] Zakharova A, Yen S T, and Chao K A 2002 Phys. Rev. B 66 085312
[33] Jancu J M, Scholz R, de Andrada e Silva E A, and La Rocca G C 2005 Phys. Rev. B 72 193201
[34] Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press)
[35] Yu P Y and Cardona M 2001 Fundamentals of Semiconductors Physics and Materials Properties (Berlin: Springer)
[36] Ando T, Fowler A B and Stern F 1982 Rev. Mod. Phys. 54 437
[37] Warburton R J, Gauer C, Wixforth A, Kotthaus J P, Brar B and Kroemer H 1996 Phys. Rev. B 53 7903
[38] Tung L C, Wu X G, Pfeiffer L N, West K W and Wang Y J 2010 J. Appl. Phys. 108 083502
[39] Wu X G, Xu L J and Zheng H Z 2006 Phys. Rev. B 74 165309
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[3] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[4] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[5] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[6] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[7] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[8] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[9] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[10] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[11] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[12] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[13] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[14] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[15] Non-perturbative multiphoton excitation studies in an excitonic coupled quantum well system using high-intensity THz laser fields
Monica Gambhir, Vinod Prasad. Chin. Phys. B, 2019, 28(8): 087803.
No Suggested Reading articles found!