Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 063401    DOI: 10.1088/1674-1056/ac4900
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Collision site effect on the radiation dynamics of cytosine induced by proton

Xu Wang(王旭)1, Zhi-Ping Wang(王志萍)1,†, Feng-Shou Zhang(张丰收)2, and Chao-Yi Qian (钱超义)1
1 Department of Fundamental Courses, Wuxi Institute of Technology, Wuxi 214121, China;
2 The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  By combing the time-dependent density functional calculations for electrons with molecular dynamics simulations for ions (TDDFT-MD) nonadiabatically in real time, we investigate the microscopic mechanism of collisions between cytosine and low-energy protons with incident energy ranging from 150 eV to 1000 eV. To explore the effects of the collision site and the proton incident energy on irradiation processes of cytosine, two collision sites are specially considered, which are N and O both acting as the proton receptors when forming hydrogen bonds with guanine. Not only the energy loss and the scattering angle of the projectile but also the electronic and ionic degrees of freedom of the target are identified. It is found that the energy loss of proton increases linearly with the increase of the incident energy in both situations, which are 14.2% and 21.1% of the incident energy respectively. However, the scattering angles show different behaviors in these two situations when the incident kinetic energy increases. When proton collides with O, the scattering angle of proton is larger and the energy lost is more, while proton captures less electrons from O. The calculated fragment mass distribution shows the high counts of the fragment mass of 1, implying the production of H+ fragment ion from cytosine even for proton with the incident energy lower than keV. Furthermore, the calculated results show that N on cytosine is easier to be combined with low-energy protons to form NH bonds than O.
Keywords:  time-dependent density functional theory      cytosine      proton-induced collision      fragmentation  
Received:  04 October 2021      Revised:  23 December 2021      Accepted manuscript online:  07 January 2022
PACS:  34.50.Gb (Electronic excitation and ionization of molecules)  
  82.30.Fi (Ion-molecule, ion-ion, and charge-transfer reactions)  
  87.15.H- (Dynamics of biomolecules)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 11905160 and 11635003), the ‘333’ Project of Jiangsu Province, China (Grant No. BRA2020327), the Science Foundation of Wuxi Institute of Technology (Grant No. ZK201903).
Corresponding Authors:  Zhi-Ping Wang     E-mail:  zpwang03247@163.com

Cite this article: 

Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义) Collision site effect on the radiation dynamics of cytosine induced by proton 2022 Chin. Phys. B 31 063401

[1] Goodhead D T 1994 Int. J. Radiat. Biol. 65 7
[2] Von Sonntag C 2006 Free-Radical-Induced DNA Damage and Its Repair (Berlin: Springer)
[3] Boudaïffa B, Cloutier P, Hunting D, Huels M A and Sanche L 2000 Science 287 1658
[4] Fokas E, Kraft G, An H X and Engenhart-Cabillic R 2009 Biochim. Biophys. Acta 1796 216
[5] Reisz J A, Bansal N, Qian J, Zhao W L and Furdui C M 2014 Antioxid. Redox Signal. 21 260
[6] Friedland W, Schmitt E, Kundrát P, Dingfelder M, Baiocco G, Barbieri S and Ottolenghi A 2017 Sci. Rep. 7 45161
[7] Dong Y F, Liao H, Gao Y X, Cloutier P, Zheng Y and Sanche L 2021 J. Phys. Chem. Lett. 12 717
[8] Keta O, Petković V, Cirrone P, Petringa G, Cuttone G, Sakata D, Shin Wook-Geun, Incerti S, Petković I and Fira A R 2021 Int. J. Rad. Biol. 97 1229
[9] Tabet J, Eden S, Feil S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S and Märk T D 2010 Phys. Rev. A 82 022703
[10] Ren X G, Wang E L, Skitnevskaya A D, Trofimov A B, Gokhberg K and Dorn A 2018 Nat. Phys. 14 1062
[11] Brédy R, Bernard J, Chen L, Wei B, Salmoun A, Bouchama T, Buchet-Poulizac M C and Martin S 2005 Nucl. Instrum. Methods. Phys. Res. Sect. B 235 392
[12] Dal Cappello C, Hervieux P A, Charpentier I and Ruiz-Lopez F 2008 Phys. Rev. A 78 042702
[13] Poully J C, Miles J, De Camillis S, Cassimi A and Greenwood J B 2015 Phys. Chem. Chem. Phys. 17 7172
[14] Sadr-Arani L, Mignon P, Chermette H, Abdoul-Carime H, Farizon B and Farizon M 2015 Phys. Chem. Chem. Phys. 17 11813
[15] Alvarez-Ibarra A, Parise A, Hasnaoui K and De la Lande A 2020 Phys. Chem. Chem. Phys. 22 7747
[16] Chowdhury M R, Mandal A, Bhogale A, Bansal H, Bagdia C, Bhattacharjee S, Monti J M, Rivarola R D and Tribedi L C 2020 Phys. Rev. A 102 012819
[17] Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997
[18] Sugino O and Miyamoto Y 1999 Phys. Rev. B 59 2579
[19] Seraide R, Bernal M A, Brunetto G, De Giovannini U and Rubio A 2017 J. Phys. Chem. B 121 7276
[20] Covington C, Hartig K, Russakoff A, Kulpins R and Varga K 2017 Phys. Rev. A 95 052701
[21] Yu W D, Gao C Z, Sato S A, Castro A, Rubio A and Wei B R 2021 Phys. Rev. A 103 032816
[22] Wang Z P, Zhang F S, Xu X F, Wang Y B and Qian C Y 2019 Mod. Phys. Lett. B 33 1950257
[23] Hong X H, Wang F, Wu Y, Gou B C and Wang J G 2016 Phys. Rev. A 93 062706
[24] Wang Z P, Dinh P M, Reinhard P G, Suraud E, Bruny G, Montano C, Feil S, Eden S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S and Märk T D 2011 Int. J. Mass. Spectrom. 285 143
[25] Krasheninnikov A V, Miyamoto Y and Tománek D 2007 Phys. Rev. Lett. 99 016104
[26] Gao C Z, Wang J, Wang F and Zhang F S 2014 J. Chem. Phys 140 054308
[27] See https://www.lpt.ups-tlse.fr/cluster-dynamics/index.html about the TDDFT-MD model
[28] Dinh P M, Vincendon M, Coppens F, Suraud E and Reinhard P G 2022 Computer Phys. Comm. 270 108155
[29] Calvayrac F, Reinhard P G, Suraud E and Ullrich C A 2000 Phys. Rep. 337 493
[30] Zhao R T, Zhang N and Zhang F S 2018 Mol. Phys. 116 231
[31] Yu W, Gao C Z, Zhang Y, Zhang F S, Hutton R, Zou Y and Wei B 2018 Phys. Rev. A 97 032706
[32] Fennel Th, Meiwes-Broer K H, Tiggesbáumker J, Reinhard P G, Dinh P M and Suraud E 2010 Rev. Mod. Phys. 82 1793
[33] Dinh P M, Reinhard P G and Suraud E 2010 Phys. Rep. 485 43
[34] Marques M A L and Gross E K U 2004 Annu. Rev. Phys. Chem. 55 427
[35] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[36] Legrand C, Suraud E and Reinhard P G 2002 J. Phys. B 35 1115
[37] Goedecker S, Teter M and J Hutter 1996 Phys. Rev. B 54 1703
[38] Reinhard P G and Suraud E 2003 Introduction to Cluster Dynamics (New York: Wiley-VCH)
[39] Ullrich C A 2000 J. Mol. Struct. (THEOCHEM) 501-502 315
[40] Wang Z P, Zhang F S, Xu X F and Qian C Y 2020 Chin. Phys. B 29 023401
[41] Susi H, Ard J S and Purcell J M 1973 Spectrochimica Acta 29A 725
[42] Radchenko E D, Sheina G G, Smorygo N A and Blagoi Yu P 1984 J. Mol. Struct. 116 387
[43] Tabet J, Eden S, Feil S, Abdoul-Carime H, Farizon B, Farizon M, Ouaskit S and Märk T D 2010 Int. J. Mass Spectrom. 292 53
[44] Le Padellec A, Moretto-Capelle P, Richard-Viard M, Champeaux J P and Cafarelli P 2008 J. Phys.: Conf. Ser. 101 012007
[45] NIST Chemistry WebBook, available from http://webbook.nist.gov/
[46] Schlathölter T, Alvarado F, Bari S and Hoekstra R 2006 Phys. Scr. 73 C113
[47] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Boston: Springer)
[48] Improta R, Scalmani G and Barone V 2000 Int. J. Mass. Spectrometry 201 321
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[3] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[4] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[5] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[6] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[7] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[8] Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact
Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义). Chin. Phys. B, 2020, 29(2): 023401.
[9] Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train
Qiu-Nan Tong(佟秋男), De-Hou Fei(费德厚), Zhen-Zhong Lian(廉振中), Hong-Xia Qi(齐洪霞), Sheng-Peng Zhou(周胜鹏), Si-Zuo Luo(罗嗣佐), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(9): 093201.
[10] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[11] Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(9): 098201.
[12] Theoretical investigation on the excited state intramolecular proton transfer in Me2N substituted flavonoid by the time-dependent density functional theory method
Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2018, 27(5): 058201.
[13] Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation
Shuang Li(李爽), Ming Chen(陈明). Chin. Phys. B, 2016, 25(4): 046103.
[14] Tunable localized surface plasmon resonances in one-dimensional h-BN/graphene/h-BN quantum-well structure
Kaibiao Zhang(张开彪), Hong Zhang(张红), Xinlu Cheng(程新路). Chin. Phys. B, 2016, 25(3): 037104.
[15] Ionizations and fragmentations of benzene, methylbenzene, and chlorobenzene in strong IR and UV laser fields
Zhang Jun-Feng (张军峰), Lü Hang (吕航), Zuo Wan-Long (左万龙), Xu Hai-Feng (徐海峰), Jin Ming-Xing (金明星), Ding Da-Jun (丁大军). Chin. Phys. B, 2015, 24(11): 113301.
No Suggested Reading articles found!