Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 128503    DOI: 10.1088/1674-1056/21/12/128503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Junction barrier Schottky rectifier with improved P-well region

Wang Ying (王颖), Li Ting (李婷), Cao Fei (曹菲), Shao Lei (邵雷), Chen Yu-Xian (陈宇贤)
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
Abstract  A junction barrier Schottky (JBS) rectifier with improved P-well on 4H-SiC is proposed to improve the VF-IR trade-off and the breakdown voltage. The reverse current density of the proposed JBS rectifier at 300 K and 800 V is about 3.3×10-8 times that of the common JBS rectifier at no expense of the forward voltage drop. It is because that the depletion layer thickness in P-well region at the same reverse voltage is larger than in P+ grid, resulting in the lower spreading current and tunneling current. As a result, the breakdown voltage of the proposed JBS rectifier is over 1.6 kV that is about 0.8 times more than that of the common JBS rectifier due to the uniform electric field. Although the series resistance of the proposed JBS rectifier is a little larger than that of common JBS rectifier, the figure of merit (FOM) of the proposed JBS rectifier is about 2.9 times that of the common JBS rectifier. Based on simulating the values of susceptibility of the two JBS rectifiers to electrostatic discharge (ESD) in the human body model (HBM) circuits, the failure energy of the proposed JBS rectifier increases 17% compared with that of the common JBS rectifier.
Keywords:  Schottky rectifier      breakdown voltage      forward voltage drop      reverse current density  
Received:  16 March 2012      Revised:  16 May 2012      Accepted manuscript online: 
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30  
Fund: Project supported by the Program for New Century Excellent Talents in University, China (Grant No. NCET-10-0052) and the Fundamental Research Funds for the Central Universities of China (Grant No. HEUCFT1008).
Corresponding Authors:  Wang Ying     E-mail:  wangying7711@yahoo.com

Cite this article: 

Wang Ying (王颖), Li Ting (李婷), Cao Fei (曹菲), Shao Lei (邵雷), Chen Yu-Xian (陈宇贤) Junction barrier Schottky rectifier with improved P-well region 2012 Chin. Phys. B 21 128503

[1] Baliga B J 1998 ISPSD 5
[2] Funaki T, Kimoto T and Hikihara T 2008 IEICE Electro. Expr. 5 198
[3] Mehrotra M and Baliga B J 1994 IEEE Trans. Electron Dev. 41 1655
[4] Baliga B J 2001 Proc. IEEE 89 822
[5] Zhu L Chow T P Jones K A and Agarwal A 2006 IEEE Trans. Electron Dev. 53 363
[6] Brosselard P Banu V Camara N and Pérez-Tomás A 2009 Mater. Sci. Eng. B 165 15
[7] Singh R, Capell D C, Hefner A R, Lai J and Palmour J W 2002 IEEE Trans. Electron Dev. 49 2054
[8] Hefner A R, Singh R Jr, Lai J S, Berning D W, Bouché S and Chapuy C 2001 IEEE Trans. Power Elect. 16 273
[9] Chang S C, Wang S J, Uang K M and Liou B W 2005 Solid State Electron. 49 437
[10] Roschke M and Schwierz F 2001 IEEE Trans. Electron Dev. 48 1442
[11] Östling M 2011 Sci. Chin.: Inf. Sci. 54 1087
[12] Raghunathan R and Baliga B J 1999 Solid State Electron. 43 199
[13] Brodbeck T 2000 Proceedings of the 22nd EOS/ESD Symposium, September 26-28, 2000, Anaheim, CA, America, p. 66
[14] Lee J C, Hoque M A, Croft G D, Liou J J and Bernier J C 2000 Proceedings of the 22nd EOS/ESD Symposium, September 26-28, 2000, Anaheim, CA, America, p. 97
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!