Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100313    DOI: 10.1088/1674-1056/20/10/100313
GENERAL Prev   Next  

A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity

Wang Yi(王奕)a)b)†, Ye Liu(叶柳) a)‡, and Fang Bao-Long(方保龙)a)
a School of Physics and Material Science, Anhui University, Hefei 230039, China; b Teaching and Research Section of Physics, School of Life Sciences, Anhui Medical University, Hefei 230032, China
Abstract  We propose a scheme to generate polarization-entangled multiphoton Greenberger-Horne-Zeilinger (GHZ) states based on weak cross-Kerr nonlinearity and subsequent homodyne measurement. It can also be generalized to produce maximally N-qubit entangled states. The success probabilities of our schemes are almost equal to 1.
Keywords:  GHZ state      cross-Kerr nonlinearity      quantum entanglement  
Received:  19 April 2011      Revised:  09 June 2011      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074002), the Doctoral Foundation of the Ministry of Education of China (Grant No. 20103401110003), and the Personal Development Foundation of Anhui Province of China (Grant No. 2008Z018).

Cite this article: 

Wang Yi(王奕), Ye Liu(叶柳), and Fang Bao-Long(方保龙) A nearly deterministic scheme for generation of multiphoton GHZ states with weak cross-Kerr nonlinearity 2011 Chin. Phys. B 20 100313

[1] Bell J S 1965 Physics 1 195
[2] Greenberger D M, Horne M A and Zeilinger A 1989 in Bell's Theorem, Quantum Theory, and Conceptions of the Universe ed. Kafatos M (Dordrecht: Kluwer)
[3] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 J. Phys. 58 1131
[4] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[5] Pan J W, Simon C, Brukner C and Zeilinger A 2001 Nature (London) 410 1067
[6] Horodecki M, Oppenheim J and Winter A 2005 Nature (London) 436 673
[7] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[8] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 2000 Science 288 2024
[9] Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H and Pan J W 2004 Nature (London) 430 54
[10] Leibfried D D, Knill E, Seidelin S, Britton J, Blakestad R B, Chiaverini J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Reichle R and Wineland D J 2005 Nature (London) 438 639
[11] Sackett C A, Kielpinski D, King B E, Langer C, Meyer V, Myatt C J, Rowe M, Turchette Q A, Itano W M, Wineland D J and Monroe C 2000 Nature (London) 404 256
[12] Leibfried D, Barrett M D, Schaetz T, Britton J, Chiaverini J, Itano W M, Jost J D, Langer C and Wineland D J 2004 Science 304 1476
[13] Christian F R, Mark R, Hartmut H, Wolfgang H, Jan B, Gavin P T L, Christoph B, Ferdinand S K and Rainer B 2004 Science 304 1478
[14] For recent reviews about optical QIP, see, e.g., Ralph T C 2006 Rep. Prog. Phys. 69 853
[15] DellAnno F, de Siena S and Illuminati F 2006 Phys. Rep. 428 53
[16] Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[17] Myers C R and Laflamme R arXiv: quant-ph/0512104
[18] Bouwmeester D, Pan J W, Daniell M, Weinfurter H and Zeilinger A 1999 Phys. Rev. Lett. 82 1345
[19] Pan J W, Bouwmeester D, Daniell M, Weinfurter H and Zeilinger A 2000 Nature (London) 403 515
[20] Pan J W, Daniell M, Gasparoni S, Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435
[21] Kok P and Braunstein S L 2000 Phys. Rev. A 62 064301
[22] Jin G S, Lin Y and Wu B 2007 Phys. Rev. A 75 054302
[23] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[24] Milburn G J and Walls D F 1984 Phys. Rev. A 30 56
[25] Imoto N, Haus H A and Yamamoto Y 1985 Phys. Rev. A 32 2287
[26] Grangier P, Levenson J A and Poizat J P 1998 Nature (London) 396 537
[27] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302(R)
[28] Prevedel R, Walther P, Tiefenbacher F, Böhi P, Kaltenbaek R, Jennewein T D and Zeilinger A 2007 Nature (London) 445 65
[29] Ladd T D, Loock P V, Nemoto K, Munro W J and Yamamoto Y 2006 New J. Phys. 8 184
[30] Loock P V, Ladd T D, Sanaka K, Yamaguchi F, Nemoto K, Munro W J and Yamamoto Y 2006 Phys. Rev. Lett. 96 240501
[1] Novel traveling quantum anonymous voting scheme via GHZ states
Wenhao Zhao(赵文浩) and Min Jiang(姜敏). Chin. Phys. B, 2023, 32(2): 020303.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[4] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[7] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[8] Measurement-device-independent quantum secret sharing with hyper-encoding
Xing-Xing Ju(居星星), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波), and Lan Zhou(周澜). Chin. Phys. B, 2022, 31(10): 100302.
[9] Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华). Chin. Phys. B, 2022, 31(1): 010302.
[10] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[11] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[12] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[13] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[14] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[15] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
No Suggested Reading articles found!