Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(7): 077801    DOI: 10.1088/1674-1056/19/7/077801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ultraviolet laser-induced photovoltaic effects in miscut ferroelectric LiNbO3 single crystals

Li Xiao-Ming(李小明)a)b), Wang Fang(王芳) b), Zhao Kun(赵昆)a)b)c)† , and Zhao Song-Qing(赵嵩卿)b)c)
a State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; b Laboratory of Optic Sensing and Detecting Technology, China University of Petroleum, Beijing 102249, China; c International Center for Materials Physics, ChineInternational Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  This paper investigates the photovoltaic properties of miscut LiNbO3 single crystal with different thicknesses under irradiation of a 248 nm ultraviolet laser pulse with 20 ns duration without an applied bias. Nanosecond photovoltaic response is observed and faster rise time is obtained in thinner samples. In accord with the 248 nm laser duration, the full width at half maximum of the photovoltaic signals keeps a constant of ~20 ns. With decrease of the crystal thickness, the photovoltaic sensitivity was improved rapidly at first and then decreased, and the maximum photovoltage occurred at 0.38 mm-thick single crystal. The present results demonstrate that decreasing the LiNbO3 single crystal thickness can obtain faster response time and improve the photovoltaic sensitivity.
Keywords:  photovoltaic effect      LiNbO3 single crystal      photodetector  
Accepted manuscript online: 
PACS:  72.40.+w (Photoconduction and photovoltaic effects)  
  77.84.Dy  
  61.80.Ba (Ultraviolet, visible, and infrared radiation effects (including laser radiation))  
  61.82.Ms (Insulators)  
Fund: Project supported by the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-08-0841), the National Natural Science Foundation of China (Grant Nos. 60778034 and 60877038), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 200804250006), and Beijng Natural Science Foundation (Grant No. 4082026).

Cite this article: 

Li Xiao-Ming(李小明), Wang Fang(王芳), Zhao Kun(赵昆), and Zhao Song-Qing(赵嵩卿) Ultraviolet laser-induced photovoltaic effects in miscut ferroelectric LiNbO3 single crystals 2010 Chin. Phys. B 19 077801

[1] Naranjo B, Gimzewski J K and Putterman S 2005 Nature 434 1115
[2] Lu Z Q, Zhao K, Liu H, Zhou N, Gao L, Zhao S Q and Wang A J 2009 Chin. Opt. Lett. 7 718
[3] Wang K, Li J F and Liu N 2008 Appl. Phys. Lett. 93 092904
[4] Chen J, Li Y D, Lu W Q, Qi J W, Cui G X, Liu H B, Xu J J and Sun Q 2007 J. Appl. Phys. 102 113109
[5] Ellenbogen T, Dolev I and Arie A 2008 Opt. Lett. 33 1207
[6] Lee M, Takekawa S, Furukaw Y, Kitamura K and Hatano H 2000 Phys. Rev. Lett. 84 875
[7] Liu Y, Kitamura K, Takekawa S, Ravi G and Nakamura M 2002 Appl. Phys. Lett. 81 2686
[8] McPherson M S, Ostrovskii I and Breazeale M A 2002 Phys. Rev. Lett. 89 115506
[9] Tatyana V and Manfred W 2008 Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching (Berlin: Springer) p1
[10] Razeghi M and Rogalski A 1996 J. Appl. Phys. 79 7433
[11] Topic M 2001 Appl. Phys. Lett. 78 2387
[12] Tomm J W, Ullrich B, Qiu X G, Segawa Y, Ohtomo A, Kawasaki M and Koinuma H 2000 J. Appl. Phys. 87 1844
[13] Spaziani F, Rossi M C, Salvatori S, Conte G and Ascarelli P 2003 Appl. Phys. Lett. 82 3785 endfootnotesize
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[3] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[4] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[5] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[6] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[7] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[8] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[9] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[10] Design and optimization of a nano-antenna hybrid structure for solar energy harvesting application
Mohammad Javad Rabienejhad, Mahdi Davoudi-Darareh, and Azardokht Mazaheri. Chin. Phys. B, 2021, 30(9): 098503.
[11] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[12] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[13] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[14] High-performance self-powered photodetector based on organic/inorganic hybrid van der Waals heterojunction of rubrene/silicon
Yancai Xu(徐彦彩), Rong Zhou(周荣), Qin Yin(尹钦), Jiao Li(李娇), Guoxiang Si(佀国翔), and Hongbin Zhang(张洪宾). Chin. Phys. B, 2021, 30(7): 077304.
[15] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
No Suggested Reading articles found!