Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 057802    DOI: 10.1088/1674-1056/19/5/057802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors

Zhao De-Gang(赵德刚)a), Zhang Shuang(张爽)a), Liu Wen-Bao(刘文宝)a), Hao Xiao-Peng(郝小鹏)b), Jiang De-Sheng(江德生) a), Zhu Jian-Jun(朱建军)a), Liu Zong-Shun(刘宗顺)a), Wang Hui(王辉) a), Zhang Shu-Ming(张书明)a), Yang Hui(杨辉)a), and Wei Long(魏龙)c)
a State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; b National Institute of Metrology, Beijing 100013, China; c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
Abstract  The leakage current of GaN Schottky barrier ultraviolet photodetectors is investigated. It is found that the photodetectors adopting undoped GaN instead of lightly Si-doped GaN as an active layer show a much lower leakage current even when they have a higher dislocation density. It is also found that the density of Ga vacancies in undoped GaN is much lower than in Si-doped GaN. The Ga vacancies may enhance tunneling and reduce effective Schottky barrier height, leading to an increase of leakage current. It suggests that when undoped GaN is used as the active layer, it is necessary to reduce the leakage current of GaN Schottky barrier ultraviolet photodetector.
Keywords:  Ga vacancies      MOCVD      GaN      Schottky barrier photodetector  
Received:  14 September 2009      Revised:  30 November 2009      Accepted manuscript online: 
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  61.72.J- (Point defects and defect clusters)  
Fund: Project supported by the National Science Fund for Distinguished Young Scholars (Grant No. 60925017), the National Natural Science Foundation of China (Grant Nos. 60836003 and 60776047), the National Basic Research Program of China (Grant No. 2007CB936700) and the National High Technology Research and Development Program of China (Grant No. 2007AA03Z401).

Cite this article: 

Zhao De-Gang(赵德刚), Zhang Shuang(张爽), Liu Wen-Bao(刘文宝), Hao Xiao-Peng(郝小鹏), Jiang De-Sheng(江德生), Zhu Jian-Jun(朱建军), Liu Zong-Shun(刘宗顺), Wang Hui(王辉), Zhang Shu-Ming(张书明), Yang Hui(杨辉), and Wei Long(魏龙) Role of Ga vacancies in enhancing the leakage current of GaN Schottky barrier ultraviolet photodetectors 2010 Chin. Phys. B 19 057802

[1] McClintock R, Mayes K, Yasan A, Shiell D, Kung P and Razeghi M 2005 Appl. Phys. Lett. 86 011117
[2] Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Keller S, Speck J S, DenBaars S P and Mishra U K 1998 Appl. Phys. Lett. 73 975
[3] Parish G, Keller S, Kozodoy P, Ibbetson J P, Marchand H, Fini P T, Fleischer S B, DenBaars S P, Mishra U K and Tarsa E J 1999 Appl. Phys. Lett. 75 247
[4] Miller E J, Yu E T, Waltereit P and Speck J S 2004 Appl. Phys. Lett. 84 535
[5] Hashizume T, Kotani J and Hasegawa H 2004 Appl. Phys. Lett. 84 4884
[6] Hsu J W P, Manfra M J, Lang D V, Richter S, Chu S N G, Sergent A M, Kleiman R N, Pfeiffer L N and Molnar R J 2001 Appl. Phys. Lett. 78 1685
[7] Miller E J, Schaadt D M, Yu E T, Poblenz C, Elsass C and Speck J S 2002 Appl. Phys. Lett. 91 9821
[8] See, for example, Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 061301
[9] Sze S M 1981 Physics of Semiconductor Devices 2nd ed. (New York: Wiley) pp245--311
[10] Heinke H, Kirchner V, Einfeldt S and Hommel D 2000 Appl. Phys. Lett. 77 2145
[11] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
[12] Hauto J\"{arvi P and Corbel C In: 1995 Dupasquier A and Mills Jr A P (editor) Positron Spectroscopy of Solids (Amsterdam: IOS Press)
[13] Peng C X, Wang K F, Zhang Y, Guo F L, Weng H M and Ye B J 2009 Chin. Phys. B 18 2072
[14] Saarinen K, Laine T, Kuisma S, Nissil\"{a J, HautoJ\"{arvi P, Dobrzynski L, Baranowski J M, Pakula K, Stepniewski R, Wojdak M, Wysmolek A, Suski T, Leszczynski M, Grzegory I and Porowski S 1997 Phys. Rev. Lett. 79 3030
[15] Oila J, Saarinen K, Wickenden A E, Koleske D D, Henry R L and Twigg M E 2003 Appl. Phys. Lett. 82 1021
[16] Zhao D G, Jiang D S, Yang H, Zhu J J, Liu Z S, Zhang S M, Liang J W, Hao X P, Wei L, Li X, Li X Y and Gong H M 2006 Appl. Phys. Lett. 88 252101
[17] Sah C T, Noyce R N and Shockley W 1957 Proc. IRE 45 1228
[18] Neugebauer J and van de Walle C 1996 Appl. Phys. Lett. 69 503
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[4] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[9] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[10] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[11] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[12] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[13] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[14] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[15] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
No Suggested Reading articles found!