Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(2): 020301    DOI: 10.1088/1674-1056/25/2/020301
GENERAL Prev   Next  

Weak value amplification via second-order correlated technique

Ting Cui(崔挺)1, Jing-Zheng Huang(黄靖正)1, Xiang Liu(刘翔)3, Gui-Hua Zeng(曾贵华)1,2
1. State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Key Laboratory on Navigation and Location-based Service, and Center of Quantum Information Sensing and Processing, Shanghai Jiao Tong University, Shanghai 200240, China;
2. College of Information Science and Technology, Northwest University, Xi'an 710127, China;
3. Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai Institute of Spaceflight Control Technology, Shanghai 200233, China
Abstract  We propose a new framework combining weak measurement and second-order correlated technique. The theoretical analysis shows that weak value amplification (WVA) experiment can also be implemented by a second-order correlated system. We then build two-dimensional second-order correlated function patterns for achieving higher amplification factor and discuss the signal-to-noise ratio influence. Several advantages can be obtained by our proposal. For instance, detectors with high resolution are not necessary. Moreover, detectors with low saturation intensity are available in WVA setup. Finally, type-one technical noise can be effectively suppressed.
Keywords:  weak measurement      two-dimensional second-order correlated function  
Received:  04 May 2015      Revised:  30 July 2015      Published:  05 February 2016
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the Union Research Centre of Advanced Spaceflight Technology (Grant No. USCAST2013-05),the National Natural Science Foundation of China (Grant Nos. 61170228, 61332019, and 61471239), and the High-Tech Research and Development Program of China (Grant No. 2013AA122901).
Corresponding Authors:  Jing-Zheng Huang     E-mail:

Cite this article: 

Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华) Weak value amplification via second-order correlated technique 2016 Chin. Phys. B 25 020301

[1] Aharonov Y, Albert D Z and Vaidman L 1988 Phys. Rev. Lett. 60 1351
[2] Tamir B and Cohen E 2013 Quanta 2 7
[3] Kocsis S, Braverman B, Ravets S, Stevens M J, Mirin R P, Shalm L K and Steinberg A M 2011 Science 332 1170
[4] Wiseman H M 2007 New J. Phys. 9 165
[5] Malik M, Mirhosseini M, Lavery M P J, Leach J, Padgett M J and Boyd R W 2014 Nat. Commun. 5 3115
[6] Pryde G J, O'Brien J L, White A G, Ralph T C and Wiseman H M 2005 Phys. Rev. Lett. 94 220405
[7] Dixon P B, Starling D J, Jordan A N and Howell J C 2009 Phys. Rev. Lett. 102 173601
[8] Knee G C and Gauger E M 2014 Phys. Rev. X 4 011032
[9] Zhou X X, Li X, Luo H L and Wen S C 2014 Appl. Phys. Lett. 104 051130
[10] Mitchison G 2007 Phys. Rev. A 76 062105
[11] Mitchison G 2008 Phys. Rev. A 77 052102
[12] Duck I M, Stevenson P M and Sudarshan E C G 1989 Phys. Rev. D 40 2112
[13] Kleckner M and Ron A 2001 Phys. Rev. A 63 022110
[14] Arndt M, Nairz O, Vos-Andreae J, Keller C, Zouw G V and Zeilinger A 1999 Nature 401 680
[15] Riou J F, Guerin W, Coq Y L, Fauquembergue M, Josse V, Bouyer P and Aspect A 2006 Phys. Rev. Lett. 96 070404
[16] Cho Y W, Lim H T, Ra Y S and Kim Y H 2010 New J. Phys. 12 023036
[17] Liu R F, Zhang P, Zhou Y, Gao H and Li F L 2014 Sci. Rep. 4 4068
[18] Brown R H and Twiss R Q 1956 Nature 178 1406
[19] Ritchie N W M, Story J G and Hulet R G 1991 Phys. Rev. Lett. 66 1107
[20] Bai Y, Liu H and Han S 2007 Opt. Express 15 6062
[21] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[22] Starling D J, Dixon P B, Jordan A N and Howell J C 2009 Phys. Rev. A 80 041803
[23] Zhu X M, Zhang Y X, Pang S S, Qiao C, Liu Q H and Wu S J 2011 Phys. Rev. A 84 052111
[24] Jordan A N, Martínez-Rincón J and Howell J C 2014 Phys. Rev. X 4 011031
[1] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[2] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[3] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun- Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[4] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, M Nassik. Chin. Phys. B, 2020, 29(11): 110301.
[5] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[6] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[7] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[8] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang, Xia Yun-Jie, Duan De-Yang, Zhang Lu, Gao Qiang. Chin. Phys. B, 2015, 24(4): 044205.
[9] Dynamics of super-quantum discord and direct control with weak measurement in open quantum system
Ji Ying-Hua. Chin. Phys. B, 2015, 24(12): 120302.
[10] Preserving entanglement and the fidelity of three-qubit quantum states undergoing decoherence using weak measurement
Liao Xiang-Ping, Fang Mao-Fa, Fang Jian-Shu, Zhu Qian-Quan. Chin. Phys. B, 2014, 23(2): 020304.
[11] Promote entanglement trapping in photonic band gaps
Han Wei, Zhang Ying-Jie, Yan Wei-Bin, Xia Yun-Jie. Chin. Phys. B, 2014, 23(11): 110304.
[12] Enhancing the precision of phase estimation by weak measurement and quantum measurement reversal
He Zhi, Yao Chun-Mei. Chin. Phys. B, 2014, 23(11): 110601.
No Suggested Reading articles found!