Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 068102    DOI: 10.1088/1674-1056/28/6/068102
RAPID COMMUNICATION Prev   Next  

Direct deposition of graphene nanowalls on ceramic powders for the fabrication of a ceramic matrix composite

Hai-Tao Zhou(周海涛)1, Da-Bo Liu(刘大博)1, Fei Luo(罗飞)1, Ye Tian(田野)1, Dong-Sheng Chen(陈冬生)1, Bing-Wei Luo(罗炳威)1, Zhang Zhou(周璋)2, Cheng-Min Shen(申承民)2
1 Beijing Institute of Aeronautical Materials, Aero Engine Corporation of China, Beijing 100095, China;
2 Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

Uniform mixing of ceramic powder and graphene is of great importance for producing ceramic matrix composite. In this study, graphene nanowalls (GNWs) are directly deposited on the surface of Al2O3 and Si3N4 powders using chemical vapor deposition system to realize the uniform mixing. The morphology and the initial stage of the growth process are investigated. It is found that the graphitic base layer is initially formed parallel to the powder surface and is followed by the growth of graphene nanowalls perpendicular to the surface. Moreover, the lateral length of the graphene sheet could be well controlled by tuning the growth temperature. GNWs/Al2O3 powder is consolidated by using sparking plasma sintering method and several physical properties are measured. Owing to the addition of GNWs, the electrical conductivity of the bulk alumina is significantly increased.

Keywords:  graphene      ceramic matrix composite      chemical vapor deposition  
Received:  28 March 2019      Revised:  03 April 2019      Accepted manuscript online: 
PACS:  81.05.ue (Graphene)  
  81.05.Mh (Cermets, ceramic and refractory composites)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 51602300 and 51602299) and the National Key Research and Development Program of China (Grant No. 2018FYA0305800).

Corresponding Authors:  Bing-Wei Luo, Cheng-Min Shen     E-mail:  luobingwei@126.com;cmshen@iphy.ac.cn

Cite this article: 

Hai-Tao Zhou(周海涛), Da-Bo Liu(刘大博), Fei Luo(罗飞), Ye Tian(田野), Dong-Sheng Chen(陈冬生), Bing-Wei Luo(罗炳威), Zhang Zhou(周璋), Cheng-Min Shen(申承民) Direct deposition of graphene nanowalls on ceramic powders for the fabrication of a ceramic matrix composite 2019 Chin. Phys. B 28 068102

[1] Inam F, Yan H X, Jayaseelan D D, Peijs T and Reece M J 2010 J. Eur. Ceram. Soc. 30 153
[2] Cho J, Boccaccini A R and Shaffer M S P 2009 J. Mater. Sci. 44 1934
[3] Cho J, Inam F, Reece M J, Chlup Z, Dlouhy I, Shaffer M S P and Boccaccini A R 2011 J. Mater. Sci. 46 4770
[4] Wu Y and Kim G Y 2011 J. Mater. Process. Technol. 211 1341
[5] Esawi A and Morsi K 2007 Compos. Part. A 38 646
[6] Esawi A M K, Morsi K, Sayed A, Taher M and Lanka S 2011 Compos. Part. A 42 234
[7] Fan Y C, Wang L J, Li J L, Li J Q, Sun S K, Chen F, Chen L D and Jiang W 2010 Carbon 48 1743
[8] He T, Li J L, Wang L J, Zhu J J and Jiang W 2009 Mater. Trans. 50 749
[9] Tapaszto O, Tapaszto L, Marko M, Kern F, Gadow R and Balazsi C 2011 Chem. Phys. Lett. 511 340
[10] Liu J, Yan H X and Jiang K 2013 Ceram. Int. 39 6215
[11] Cygan T, Wozniak J, Kostecki M, Petrus M, Jastrzębska A, Ziemkowska W and Olszyna A 2017 Ceram. Int. 43 6180
[12] Sedlák R, Kovalčíková A, Múdra E, Rutkowski P, Dubiel A, Girman V, Bystrický R and Duszaa J 2017 J. Eur. Ceram. Soc. 37 3773
[13] Walker L S, Marotto V R, Rafiee M A, Koratkar N and Corral E L 2011 ACS Nano 5 3182
[14] Wang K, Wang Y F, Fan Z J, Yan J and Wei T 2011 Mater. Res. Bull. 46 315
[15] Gutierrez-Gonzalez C F, Smirnov A, Centeno A, Fernández A, Alonso B, Rocha V G, Torrecillas R, Zurutuza A and Bartolome J F 2015 Ceram. Int. 41 7434
[16] Porwal H, Grasso S and Reece M J 2013 Adv. Appl. Ceram. 112 443
[17] Markandana K, Chin J K and Tan M 2017 J. Mater. Res. 32 84
[18] Zhang Y, Du J L, Tang S, Liu P, Deng S Z, Chen J and Xu N S 2012 Nanotechnol. 23 015202
[19] Jiang L L, Yang T Z, Liu F, Dong J, Yao Z H, Shen C M, Deng S Z, Xu N S, Liu Y Q and Gao H J 2013 Adv. Mater. 25 250
[20] Sun J Y, Chen Y B, Cai X, Ma B J, Chen Z L, Priydarshi M K, Chen K, Gao T, Song X J, Ji Q Q, Guo X F, Zou D C, Zhang Y F and Liu Z F 2015 Nano Res. 8 3496
[21] Chen X D, Chen Z L, Sun J Y, Zhang Y F and Liu Z F 2016 Acta Phys. -Chim. Sin. 32 14
[22] Zhou H T, Yu N, Zou F, Yao Z H, Gao G and Shen C M 2016 Chin. Phys. B 25 096106
[23] Zhou H T, Liu D B, Luo F, Luo B W, Tian Y, Chen D S and Shen C M 2018 Micro & Nano Lett. 13 842
[24] Zou F, Zhou H T, Yu N, Yao Z H, Liu F and Shen C M 2016 Chem. Phys. Lett. 664 29
[25] Dong J, Yao Z H, Yang T Z, Jiang L L and Shen C M 2013 Sci. Rep. 3 1733
[26] Gupta A, Chen G, Joshi P, Tadigadapa S and Eklund P C 2006 Nano Lett. 6 2667
[27] Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C and Wirtz L 2007 Nano Lett. 7 238
[28] Vitchev R, Alexander Malesevic A, Petrov R, Kemps R, Mertens M, Annick Vanhulsel A and Haesendonck C 2010 Nanotechnol. 21 095602
[29] Zhou M, Bi H, Lin T Q, Lv X J, Wan D Y, Huang F Q and Lin J H 2014 Carbon 75 314
[30] Li Q S, Zhang Y J, Gong H Y, Sun H B, Li T, Guo X and Ai S H 2015 Ceram. Int. 41 13547
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[3] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[8] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[9] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[10] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[11] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[12] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[15] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
No Suggested Reading articles found!