In situ Raman spectroscopy and x-ray diffraction measurements are used to explore the structural stability of CaB6 at high pressures and room temperature. The results show no evidence of structural phase transitions up to at least 40 GPa. The obtained equation of state with smooth pressure dependencies yields a zero-pressure isothermal bulk modulus B0=170 (5) GPa, which agrees well with the previous measurements. The frequency shifts for A1g, Eg, and T2g vibrational modes of polycrystalline CaB6 are obtained with pressure uploading. As the pressure increases, all the vibration modes have smooth monotonic pressure dependence. The Grüneisen parameter of Eg modes is the largest, indicating its largest dependence on the volume of a crystal lattice.
Project supported by the National Natural Science Foundation of China (Grant Nos. 51572108, 51632002, 11504127, 11674122, 11574112, 11474127, and 11634004), the 111 Project, China (Grant No. B12011), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT_15R23), and the National Found for Fostering Talents of Basic Science, China (Grant No. J1103202).
Mingkun Liu(刘明坤), Can Tian(田灿), Xiaoli Huang(黄晓丽), Fangfei Li(李芳菲), Yanping Huang(黄艳萍), Bingbing Liu(刘冰冰), Tian Cui(崔田) Structural stability and vibrational characteristics of CaB6 under high pressure 2019 Chin. Phys. B 28 068101
[1]
Loboda P I, Kysla H P, Dub S M and Karasevs'ka O P 2009 Mater. Sci. 45 108
[2]
Takeda M, Terui M, Takahashi N and Ueda N 2006 J. Solid State Chem. 179 2823
[3]
Kimura S, Nanba T, Tomikawa M, Kunii S and Kasuya T 1992 Phys. Rev. B 46 12196
[4]
Lee B and Wang L W 2005 Appl. Phys. Lett. 87 262509
[5]
Joss W, van Ruitenbeek J M, Crabtree G W, Tholence J L, van Deursen A P J and Fisk Z 1987 Phys. Rev. Lett. 59 1609
[6]
Ji X H, Zhang Q Y, Xu J Q and Zhao Y M 2011 Prog. Solid State Chem. 39 51
[7]
Xu Y, Zhang L J, Cui T, Li Y, Xie Y, Yu W, Ma Y M and Zou G T 2007 Phys. Rev. B 76 214103
[8]
Tarascon J M, Etourneau J, Dordor P, Hagenmuller P, Kasaya M and Coey J M D 1980 J. Appl. Phys. 51 574
[9]
Popov I, Baadji N and Sanvito S 2012 Phys. Rev. Lett. 108 107205
[10]
Young D P, Hall D, Torelli M E, Fisk Z, Sarrao J L, Thompson J D, Ott H R, Oseroff S B, Goodrich R G and Zysler R 1999 Nature 397 412
[11]
Vonlanthen P, Felder E, Degiorgi L, Ott H R, Young D P, Bianchi A D and Fisk Z 2000 Phys. Rev. B 62 10076
[12]
Tromp H J, van Gelderen P, Kelly P J, Brocks G and Bobbert P A 2001 Phys. Rev. Lett. 87 016401
[13]
Zhitomirsky M E, Rice T M and Anisimov V I 1999 Nature 402 251
[14]
Zhitomirsky M E and Rice T M 2000 Phys. Rev. B 62 1492
[15]
Cao J X, Zhu Y, Yang Z Q and Wu R Q 2009 Phys. Rev. B 79 132404
[16]
Song M, Yang I S, Kim J Y and Cho B K 2006 Vib. Spectrosc. 42 288
[17]
Godwal B K, Petruska E A, Speziale S, Yan J, Clark S M, Kruger M B and Jeanloz1 R 2009 Phys. Rev. B 80 172104
[18]
Cooley J C, Aronson M C, Sarrao J L and Fisk Z 1997 Phys. Rev. B 56 14541
[19]
Li M, Yang W, Li L, Wang H, Liang S and Gao C 2011 Physica B 406 59
[20]
Kolmogorov A N, Shah S, Margine E R, Kleppe A K and Jephcoat A P 2012 Phys. Rev. Lett. 109 075501
[21]
Shah S and Kolmogorov A N 2013 Phys. Rev. B 88 014107
[22]
Klotz S, Chervin J C, Munsch P, Le March and G 2009 J. Phys. D: Appl. Phys. 42 075413
[23]
Mao H K, Bell P M, Shaner J W and Steinberg D J 1978 J. Appl. Phys. 49 3276
[24]
Hammersley A, Svensson S, Hanfl, M, Fitch A and Hausermann D 1996 High Press. Res. 14 235
[25]
Young R A 1993 The Rietveld Method, IUCr Monographs on Crystallography (Oxford: Oxford Science Publication)
[26]
Jr. H and Lin M S 1968 Solid State Commun. 6 379
[27]
Wei Y K, Yu J X, Li Z G, Cheng Y and Ji G F 2011 Physica B 406 4476
[28]
Birch F 1938 J. Appl. Phys. 9 279
[29]
Otani S 1998 J. Cryst. Growth 192 346
[30]
Goncharov A F 2012 Int. J. Spectro. 2012 617528
[31]
Tang R L, Li Y, Tao Q, Li N N, Li H, Han D D, Zhu P W and Wang X 2013 Chin. Phys. B 22 066202
[32]
Lacina D and Gupta Y M 2014 J. Chem. Phys. 141 084503
[33]
Ogita N, Nagai S, Okamoto N, Ig F, Kunii S, Akamtsu T, Akimitsu J and Udagawaa M 2004 J. Solid State Chem. 177 461
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.