Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 076105    DOI: 10.1088/1674-1056/27/7/076105
RAPID COMMUNICATION Prev   Next  

Charge noise acting on graphene double quantum dots in circuit quantum electrodynamics architecture

Yan Li(李炎), Shu-Xiao Li(李舒啸), Hai-Ou Li(李海欧)dag, Guang-Wei Deng(邓光伟), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平)
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  We investigate the dephasing mechanisms induced by the charge noise and microwave heating effect acting on a graphene double quantum dot (DQD) capacitively coupled to a microwave resonator. The charge noise is obtained from DC transport current, and its contribution to dephasing is simultaneously determined by the amplitude response of the microwave resonator. A lowfrequency 1/f-type noise is demonstrated to be the dominant factor of the dephasing of graphene DQD. Furthermore, when the applied microwave power is larger than-90 dBm, the dephasing rate of graphene DQD increases rapidly with the increase of microwave power, and fluctuates slightly with the applied microwave power smaller than-90 dBm. Our results can be applied to suppress the impeditive influence on the dephasing of graphene-based devices associated with microwave input in the perspective investigations.
Keywords:  quantum dot      microwave resonator      charge noise      graphene  
Received:  10 March 2018      Revised:  10 April 2018      Accepted manuscript online: 
PACS:  61.48.Gh (Structure of graphene)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  03.67.Lx (Quantum computation architectures and implementations)  
  85.40.Qx (Microcircuit quality, noise, performance, and failure analysis)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFA0301700), the National Natural Science Foundation of China (Grant Nos. 61674132, 11674300, 11575172, and 11625419), and the Anhui Initiative in Quantum information Technologies, China (Grant No. AHY080000). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.
Corresponding Authors:  Hai-Ou Li, Guo-Ping Guo     E-mail:  haiouli@ustc.edu.cn;gpguo@ustc.edu.cn

Cite this article: 

Yan Li(李炎), Shu-Xiao Li(李舒啸), Hai-Ou Li(李海欧)dag, Guang-Wei Deng(邓光伟), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平) Charge noise acting on graphene double quantum dots in circuit quantum electrodynamics architecture 2018 Chin. Phys. B 27 076105

[1] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[2] Stockklauser A, Scarlino P, Koski J V, Gasparinetti S, Andersen C K, Reichl C, Wegscheider W, Ihn T, Ensslin K and Wallraff A 2017 Phys. Rev. X 7 011030
[3] Mi X, Cady J V, Zajac D M, Deelman P W and Petta J R 2017 Science 355 156
[4] Bruhat L E, Cubaynes T, Viennot J J, Dartiailh M C, Desjardins M M, Cottet A and Kontos T 2016 arXiv:161205214
[5] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599
[6] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018 Science 359 1123
[7] Landig A J, Koski J V, Scarlino P, Mendes U C, Blais A, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2017 arXiv:171101932
[8] Han T Y, Deng G W, Wei W and Guo G P 2016 Chin. Phys. Lett. 33 047301
[9] Delbecq M R, Bruhat L E, Viennot J J, Datta S, Cottet A and Kontos T 2013 Nat. Commun. 4 1400
[10] Deng G W, Wei D, Li S X, Johansson J R, KongW C, Li H O, Cao G, Xiao M, Guo G C, Nori F, Jiang H W and Guo G P 2015 Nano Lett. 15 6620
[11] Liu B Y, Cui W, Dai H Y, Chen X and Zhang M 2017 Chin. Phys. B 26 090303
[12] Zhu Z C, Tu T and Guo G P 2011 Chin. Phys. Lett. 28 040301
[13] Hu X D, Liu Y X and Nori F 2012 Phys. Rev. B 86 035314
[14] Jin P Q, Marthaler M, Shnirman A and Schön G 2012 Phys. Rev. Lett. 108 190506
[15] Deng G W, Wei D, Johansson J R, Zhang M L, Li S X, Li H O, Cao G, Xiao M, Tu T, Guo G C, Jiang H W, Nori F and Guo G P 2015 Phys. Rev. Lett. 115 126804
[16] Volk C, Neumann C, Kazarski S, Fringes S, Engels S, Haupt F, Muller A and Stampfer C 2013 Nat. Commun. 4 1753
[17] Zhang K, Li M M, Liu Q, Yu H F and Yu Y 2017 Chin. Phys. B 26 078501
[18] Zhang X, Li H O, Wang K, Cao C, Xiao M and Guo G P 2018 Chin. Phys. B 27 020305
[19] Su F F, Liu W Y, Xu H K, Deng H, Li Z Y, Tian Y, Zhu X B, Zheng D N, Lv L and Zhao S P 2017 Chin. Phys. B 26 060308
[20] Huang P H and Hu X D 2014 Phys. Rev. B 89 195302
[21] Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804
[22] Dupont-Ferrier E, Roche B, Voisin B, Jehl X, Wacquez R, Vinet M, Sanquer M and Franceschi S D 2013 Phys. Rev. Lett. 110 136802
[23] Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V and Yacoby A 2013 Phys. Rev. Lett. 110 146804
[24] Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 Rev. Mod. Phys. 86 361
[25] Adam B, Daniel K and Dimitrie C 2014 Appl. Phys. Lett. 105 192102
[26] Yu S X, Lai C H and Oh C H 2011 Acta Phys. Sin. 60 050304 (in Chinese)
[27] Basset J, Stockklauser A, Jarausch D D, Frey T, Reichl C, Wegscheider W, Wallraff A, Ensslin K and Ihn T 2014 Appl. Phys. Lett. 105 063105
[28] Xu G Y, Torres C M, Song E B, Tang J S, Bai J W, Duan X F, Zhang Y G and Wang K L 2010 Nano Lett. 10 4590
[29] Cheng Z G, Li Q, Li Z J, Zhou Q Y and Fang Y 2010 Nano Lett. 10 1864
[30] Song X X, Li H O, You J, Han T Y, Cao G, Tu T, Xiao M, Guo G C, Jiang H W and Guo G P 2015 Sci. Rep. 5 8142
[31] Zhang M L, Deng G W, Li S X, Li H O, Cao G, Tu T, Xiao M, Guo G C, Jiang H W, Siddiqi I and Guo G P 2014 Appl. Phys. Lett. 104 083511
[32] Li Y, Li S X, Gao F, Li H O, Xu G, Wang K, Liu D, Cao G, Xiao M, Wang T, Zhang J J, Guo G C and Guo G P 2018 Nano Lett. 18 2091
[33] Pozar D M 2004 Microwave Engineering (Wiley)
[34] Petersson K D, McFaul L W, Schroer M D, Jung M, Taylor J M, Houck A A and Petta J R 2012 Nature 490 380
[35] Zhou C, Wang L, Tu T, Han T Y, Li H O and Guo G P 2013 Chin. Phys. Lett. 30 050301
[36] Zhou C, Tu T, Wang L, Li H O, Cao G, Guo G C and Guo G P 2012 Chin. Phys. Lett. 29 117303
[37] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Guo G C and Guo G P 2011 Chin. Phys. Lett. 28 067301
[38] Tavis M and Cummings F W 1968 Phys. Rev. 170 379
[39] Rahi P K and Mehra R 2013 Int. J. Sci. Res. Eng. Tech. 2 389
[40] Li H O, Cao G, Xiao M, You J, Wei D, Tu T, Guo G C, Jiang H W and Guo G P 2014 J. Appl. Phys. 116 174504
[41] Culcer D, Hu X D and Sarma S D 2009 Appl. Phys. Lett. 95 073102
[42] Dial O, Shulman M, Harvey S, Bluhm H, Umansky V and Yacoby A 2013 Phys. Rev. Lett. 110 146804
[43] Martin I and Galperin Y M 2006 Phys. Rev. B 73 180201
[44] Jung S W, Fujisawa T, Hirayama Y and Jeong Y H 2004 Appl. Phys. Lett. 85 768
[45] Viennot J J, Delbecq M R, Dartiailh M C, Cottet A and Kontos T 2014 Phys. Rev. B 89 165404
[46] Petersson K D, Petta J R, Lu H and Cossard A C 2010 Phys. Rev. Lett. 105 246804
[47] Ithier G, Collin E, Joyez P, Meeson P J, Vion D, Esteve D, Chiarello F, Shnirman A, Makhlin Y, Schriefl J and Schoen G 2005 Phys. Rev. B 72 134519
[48] Dutta P and Horn P M 1981 Rev. Mod. Phys. 53 497
[49] Paladino E, Faoro L, Falci G and Rosario F 2002 Phys. Rev. Lett. 88 228304
[50] Gallagher P, Tod K and Goldhaber-Gordon D 2010 Phys. Rev. B 81 115409
[51] You J, Li H O, Cao G, Deng G W, Xiao M and Guo G P 2015 Europhys. Lett. 111 17001
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[9] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[10] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[11] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[12] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[13] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[14] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[15] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
No Suggested Reading articles found!