Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(9): 094205    DOI: 10.1088/1674-1056/24/9/094205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity

Guo Yu-Jiea b, Nie Wen-Jiec
a Department of Physics, Tsinghua University, Beijing 100084, China;
b Beijing Computational Science Research Center, Beijing 100094, China;
c Department of Applied Physics, East China Jiaotong University, Nanchang 330013, China
Abstract  

We study the optical properties of a two-level atomic ensemble controlled by a high-finesse cavity. Even though the cavity is initially in the vacuum state in the absence of external driving, the probe response of the atomic ensemble can be dramatically modified. When the collectively enhanced atom-cavity coupling is strong enough and the cavity decay rate is much smaller than the atomic damping rate, an electromagnetically induced transparency-like coherent phenomenon emerges with a dip absorption for the response of the two-level atoms in the cavity without driving, and thus is called vacuum induced transparency. We also show the slow light with very low group velocity in such an atomic ensemble.

Keywords:  electromagnetically induced transparency      two-level atomic ensemble      vacuum      slow light  
Received:  26 December 2014      Revised:  13 March 2015      Published:  05 September 2015
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11304010).

Corresponding Authors:  Guo Yu-Jie     E-mail:  guoyujie@csrc.ac.cn

Cite this article: 

Guo Yu-Jie, Nie Wen-Jie Vacuum induced transparency and slow light phenomena in a two-level atomic ensemble controlled by a cavity 2015 Chin. Phys. B 24 094205

[1] Harris S E 1997 Phys. Today 50(7) 36
[2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Harris S E, Field J E and Imamoğlu A 1990 Phys. Rev. Lett. 64 1107
[4] Boller K J, Imamolu A and Harris S E 1991 Phys. Rev. Lett. 66 2593
[5] Tanji-Suzuki H, Chen Wenlan, Landig R, Simon J and Vuletić V 2011 Science 333 1266
[6] Field J E 1993 Phys. Rev. A 47 5064
[7] Schwartz S E and Tan T Y 1967 Appl. Phys. Lett. 10 4
[8] Boyd R W, Raymer M G, Narum P and Harter D J 1981 Phys. Rev. A 24 411
[9] Agarwal G S and Dey T N 2009 Laser & Photon. Rev. 3 287
[10] Harris S E, Field J E and Kasapi A 1992 Phys. Rev. A 46 R29
[11] Xiao M, Li Y Q, Jin S Z and Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666
[12] Kasapi A, Jain M, Yin G Y and Harris S E 1995 Phys. Rev. Lett. 74 2447
[13] Budker D, Kimball D F, Rochester S M and Yashchuk V V 1999 Phys. Rev. Lett. 83 1767
[14] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Phys. Rev. Lett. 90 113903
[15] Bigelow M S, Lepeshkin N N and Boyd R W 2003 Science 301 200
[16] Baldit E, Bencheikh K, Monnier P, Levenson J A and Rouget V 2005 Phys. Rev. Lett. 95 143601
[17] Agarwal G S and Dey T N 2006 Phys. Rev. A 73 043809
[18] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[19] Sun C P, Li Y and Liu X F 2003 Phys. Rev. Lett. 91 147903
[20] Li Y and Sun C P 2004 Phys. Rev. A 69 051802(R)
[21] Jin G R, Zhang P, Liu Y X and Sun C P 2003 Phys. Rev. B 68 134301
[22] Agarwal G S 1984 Phys. Rev. Lett. 53 1732
[23] Walls D F and Milburn G J 2008 Quantum Optics (2nd Edn.) (Berlin: Springer)
[24] Bernardot F, Nussenzveig P, Brune M, Raimond J M and Haroche S 1992 Europhys. Lett. 17 33
[25] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 Phys. Rev. Lett. 93 233603
[26] Zhu Y F, Gauthier D J, Morin S E, Wu Q L, Carmichael H J and Mossberg T W 1990 Phys. Rev. Lett. 64 2499
[27] Rice P R and Brecha R J 1996 Opt. Commun. 126 230
[28] Sansonetti J E and Martin W C 2005 J. Phys. Chem. Ref. Data 34 1559
[29] Boyd R W 2008 Nolinear Optics (3rd Edn.) (New York: Elsevier)
[1] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[2] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
[3] Precise measurement of a weak radio frequency electric field using a resonant atomic probe
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Jingxu Bai(白景旭), Yuechun Jiao(焦月春), Jianming Zhao(赵建明). Chin. Phys. B, 2020, 29(3): 033201.
[4] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[5] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[6] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[7] Plasma simulation to analyze velocity distribution characteristics of pseudospark-sourced electron beam
Hai-Long Li(李海龙), Chen-Fei Hu(胡陈飞), Che Xu(徐彻), Yong Yin(殷勇), Bin Wang(王彬), Lin Meng(蒙林), Mao-Yan Wang(王茂琰). Chin. Phys. B, 2020, 29(10): 105101.
[8] Rydberg electromagnetically induced transparency and Autler-Townes splitting in a weak radio-frequency electric field
Liping Hao(郝丽萍), Yongmei Xue(薛咏梅), Jiabei Fan(樊佳蓓), Yuechun Jiao(焦月春), Jianming Zhao(赵建明), Suotang Jia(贾锁堂). Chin. Phys. B, 2019, 28(5): 053202.
[9] Effects of deposition temperature on optical properties of MgF2 over-coated Al mirrors in the VUV
Chun Guo(郭春), Bin-Cheng Li(李斌成), Ming-Dong Kong(孔明东), Da-Wei Lin(林大伟). Chin. Phys. B, 2019, 28(11): 117801.
[10] Effect of residual Doppler averaging on the probe absorption in cascade type system: A comparative study
Suman Mondal, Arindam Ghosh, Khairul Islam, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2018, 27(9): 094204.
[11] Laser frequency offset-locking using electromagnetically induced transparency spectroscopy of 85Rb in magnetic field
Han-Mu Wang(王汉睦), Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Zi-Shan Xu(徐子珊), Hong-Ping Liu(刘红平). Chin. Phys. B, 2018, 27(9): 094205.
[12] Superconducting membrane mechanical oscillator based on vacuum-gap capacitor
Yong-Chao Li(李永超), Xin Dai(戴欣), Jun-Liang Jiang(江俊良), Jia-Zheng Pan(潘佳政), Xing-Yu Wei(魏兴雨), Ya-Peng Lu(卢亚鹏), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Guo-Zhu Sun(孙国柱), Pei-Heng Wu(吴培亨). Chin. Phys. B, 2018, 27(6): 060701.
[13] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[14] Vapor cell geometry effect on Rydberg atom-based microwave electric field measurement
Linjie Zhang(张临杰), Jiasheng Liu(刘家晟), Yue Jia(贾玥), Hao Zhang(张好), Zhenfei Song(宋振飞), Suotang Jia(贾锁堂). Chin. Phys. B, 2018, 27(3): 033201.
[15] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
No Suggested Reading articles found!