Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097101    DOI: 10.1088/1674-1056/ac0e20

Passivation and dissociation of Pb-type defects at a-SiO2/Si interface

Xue-Hua Liu(刘雪华)1, Wei-Feng Xie(谢伟锋)1, Yang Liu(刘杨)2,3, and Xu Zuo(左旭)1,4,5,†
1 College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China;
2 Microsystem and Terahertz Research Center, China Academy of Engineering Physics, Chengdu 610200, China;
3 Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
4 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Nankai University, Tianjin 300350, China;
5 Engineering Research Center of Thin Film Optoelectronics Technology, Ministry of Education, Nankai University, Tianjin 300350, China
Abstract  It is well known that in the process of thermal oxidation of silicon, there are Pb-type defects at amorphous silicon dioxide/silicon (a-SiO2/Si) interface due to strain. These defects have a very important impact on the performance and reliability of semiconductor devices. In the process of passivation, hydrogen is usually used to inactivate Pb-type defects by the reaction Pb+H2PbH+H. At the same time, PbH centers dissociate according to the chemical reaction PbH→Pb+H. Therefore, it is of great significance to study the balance of the passivation and dissociation. In this work, the reaction mechanisms of passivation and dissociation of the Pb-type defects are investigated by first-principles calculations. The reaction rates of the passivation and dissociation are calculated by the climbing image-nudged elastic band (CI-NEB) method and harmonic transition state theory (HTST). By coupling the rate equations of the passivation and dissociation reactions, the equilibrium density ratio of the saturated interfacial dangling bonds and interfacial defects (Pb, Pb0, and Pb1) at different temperatures is calculated.
Keywords:  first-principles calculation      a-SiO2/Si interface      Pb-type defects      equilibrium density  
Received:  02 June 2021      Revised:  19 June 2021      Accepted manuscript online:  24 June 2021
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  61.72.Bb (Theories and models of crystal defects)  
  61.80.Az (Theory and models of radiation effects)  
Fund: Project supported by the Science Challenge Project, China (Grant No. TZ2016003-1-105), the Tianjin Natural Science Foundation, China (Grant No. 20JCZDJC00750), and the Fundamental Research Funds for the Central Universities, Nankai University (Grant Nos. 63211107 and 63201182).
Corresponding Authors:  Xu Zuo     E-mail:

Cite this article: 

Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭) Passivation and dissociation of Pb-type defects at a-SiO2/Si interface 2021 Chin. Phys. B 30 097101

[1] Cheng Y C 1977 Prog. Surf. Sci. 8 181
[2] Caplan P J, Poindexter E H, Deal B E and Razouk R R 1979 J. Appl. Phys. 50 5847
[3] Brower K L 1983 Appl. Phys. Lett. 43 1111
[4] Rabedeau T A, Tidswell I M, Pershan P S, Bevk J and Freer B S 1991 Appl. Phys. Lett. 59 3422
[5] Rong F C, Harvey J F, Poindexter E H and Gerardi G J 1993 Appl. Phys. Lett. 63 920
[6] Von Bardeleben H J, Schoisswohl M and Cantin J L 1996 Colloids Surf. A 115 277
[7] Nishi Y, Tanaka K and Ohwada A 1972 Jpn. J. Appl. Phys. 10 52
[8] Lenahan P M and Dressendorfer P V 1982 Appl. Phys. Lett. 41 542
[9] Cook M and White C T 1987 Phys. Rev. Lett. 59 1741
[10] Brower K L 1988 Phys. Rev. B 38 9657
[11] Brower K L and Myers S M 1990 Appl. Phys. Lett. 57 162
[12] Stesmans A 1996 Appl. Phys. Lett. 68 2723
[13] Stesmans A 2000 Phys. Rev. B 61 8393
[14] Brower K L 1990 Phys. Rev. B 42 3444
[15] Stathis J H 1995 J. Appl. Phys. 77 6205
[16] Stesmans A 2000 J. Appl. Phys. 88 489
[17] Khatri R, Asoka Kumar P, Nielsen B, Roellig L O and Lynn K G 1994 Appl. Phys. Lett. 65 330
[18] Van de Walle C G and Street R A 1994 Phys. Rev. B 49 14766
[19] Stesmans A 1996 Appl. Phys. Lett. 68 2076
[20] Li P, Song Y and Zuo X 2019 Phys. Status Solidi RRL 13 1800547
[21] Li P, Chen Z H, Yao P, Zhang F J, Wang J W, Song Y and Zuo X 2019 Appl. Surf. Sci. 483 231
[22] Hong Z C and Zuo X 2020 Journal of System Simulation 32 2362
[23] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Vineyard G H 1957 J. Phys. Chem. Solids 3 121
[26] Stesmans A 1993 Phys. Rev. B 48 2418
[27] Shelby J E 1977 J. Appl. Phys. 48 3387
[28] Stesmans A and Afanas'ev V V 1998 J. Phys.: Condens. Matter 10 L19
[29] Cook M and White C T 1988 Phys. Rev. B 38 9674
[30] Pantelides S T, Rashkeev S N, Buczko R, Fleetwood D M and Schrimpf R D 2000 IEEE Trans. Nucl Sci. 47 2262
[31] Stirling A and Pasquarello A 2005 J. Phys.: Condens. Matter 17 S2099
[32] Stirling A, Pasquarello A, Charlier J and Car R 2000 Phys. Rev. Lett. 85 2773
[33] Stathis J H and Cartier E 1994 Phys. Rev. Lett. 72 2745
[34] Stathis J H and Dori L 1991 Appl. Phys. Lett. 58 1641
[1] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[2] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[3] Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(8): 087307.
[4] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[5] Inverted V-shaped evolution of superconducting temperature in SrBC under pressure
Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼). Chin. Phys. B, 2021, 30(7): 076301.
[6] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[7] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[8] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[9] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[10] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[11] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[12] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[13] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[14] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[15] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[2] Shao Fu-qiu, Wang Long, Wu Han-ming, Yao Xin-zi. MAGNETIC FIELD GRADIENT EFFECTS ON ION FLUX BEHAVIORS IN ECR PLASMA SOURCES[J]. Acta Phys. Sin. (Overseas Edition), 1998, 7(9): 688 -694 .
[3] Yao Xin-cheng, Li Zhao-lin, Cheng Bing-ying, Han Xue-hai, Zhang Dao-zhong. INCREASING TRANSVERSE STABILITY OF OPTICAL TWEEZERS BY USING DUAL-GAUSSIAN BEAM PROFILE[J]. Chin. Phys., 2000, 9(1): 65 -68 .
[4] Kong Ling-Jiang, Liu Mu-Ren, Huang Ping-Hua. A study of a main-road cellular automata traffic flow model[J]. Chin. Phys., 2002, 11(7): 678 -683 .
[5] M. Matsumoto, A. Morisako, S. Takei, Ma Yun-Gui, Yang Zheng. Effects of underlayer materials and substrate temperatures on the structural and magnetic properties of Nd2Fe14B films[J]. Chin. Phys., 2004, 13(11): 1969 -1974 .
[6] Wen Lei, Li Shun-Guang, Huang Guo-Song, Hu Li-Li, Jiang Zhong-Hong. Optical transitions and upconversion properties of Er3+-doped chloride tellurite glasses[J]. Chin. Phys., 2004, 13(2): 258 -263 .
[7] Luo Ying, Ma Ben-Kun, Duan Su-Qing, Zhao Xian-Geng, Wang Li-Min. Effects of a donor on the bond property of quantum-dot molecules[J]. Chin. Phys., 2004, 13(6): 942 -947 .
[8] Lin Xue-Chun, Kong Yu-Peng, Zhang Ying, Zhang Jie, Yao Ai-Yun, Bi Yong, Sun Zhi-Pei, Cui Da-Fu, Li Rui-Ning, Wu Ling-An, Xu Zu-Yan. Mid-infrared generation based on a periodically poled LiNbO3 optical parametric oscillator[J]. Chin. Phys., 2004, 13(7): 1042 -1045 .
[9] Fu Shi-Liu, Yin Tao, Chai Fei. Synthesis and characterization of Ca2Sn1-xCexO4 with blue luminescence originating from Ce4+ charge transfer transition[J]. Chin. Phys., 2007, 16(10): 3129 -3133 .
[10] Jing Ji-Liang, Pan Qi-Yuan. Resonant frequencies of massless scalar field in rotating black-brane spacetime[J]. Chin. Phys. B, 2008, 17(6): 1985 -1989 .