Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087307    DOI: 10.1088/1674-1056/ac0784
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures

Jianbao Zhu(朱健保)1,2, Wei Qin(秦维)2, and Wenguang Zhu(朱文光)1,2,†
1 Department of Physics, University of Science and Technology of China, and Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, Hefei 230026, China;
2 International Center for Quantum Design of Functional Materials(ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Based on first-principles density functional theory calculation, we discover a novel form of spin-orbit (SO) splitting in two-dimensional (2D) heterostructures composed of a single Bi(111) bilayer stacking with a 2D semiconducting In2Se2 or a 2D ferroelectric α-In2Se3 layer. Such SO splitting has a Rashba-like but distinct spin texture in the valence band around the maximum, where the chirality of the spin texture reverses within the upper spin-split branch, in contrast to the conventional Rashba systems where the upper branch and lower branch have opposite chirality solely in the region below the band crossing point. The ferroelectric nature of α-In2Se3 further enables the tuning of the spin texture upon the reversal of the electric polarization with the application of an external electric field. Detailed analysis based on a tight-binding model reveals that such SO splitting texture results from the interplay of complex orbital characters and substrate interaction. This finding enriches the diversity of SO splitting systems and is also expected to promise for spintronic applications.
Keywords:  spin-orbit splitting      two-dimensional heterostructure      first-principles calculation  
Received:  02 May 2021      Revised:  27 May 2021      Accepted manuscript online:  03 June 2021
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.70.Ej (Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)  
Fund: Project supported by the Science Fund from the Ministry of Science and Technology of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004), the National Natural Science Foundation of China (Grant Nos. 11674299 and 11634011), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB30000000), the Fund of Anhui Initiative Program in Quantum Information Technologies (Grant No. AHY170000), and the Fundamental Research Funds for the Central Universities, China (Grant No. WK3510000013).
Corresponding Authors:  Wenguang Zhu     E-mail:  wgzhu@ustc.edu.cn

Cite this article: 

Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光) Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures 2021 Chin. Phys. B 30 087307

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnaár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Zutić I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[3] Dresselhaus G 1955 Phys. Rev. 100 580
[4] Bychkov Y A and Rashba E I 1984 JEPT Lett. 39 78
[5] Hu L, Huang H, Wang Z, Jiang W, Ni X, Zhou Y, Zielasek V, Lagally M G, Huang B and Liu F 2018 Phys. Rev. Lett. 121 066401
[6] Li X, Zhang S, Huang H, Hu L, Liu F and Wang Q 2019 Nano Lett. 19 6005
[7] Liu K, Luo W, Ji J, Barone P, Picozzi S and Xiang H 2019 Nat. Commun. 10 5144
[8] Martínez P, Högl I, González-Ruano C, Cascales J P, Tiusan C, Lu Y, Hehn M, Matos-Abiague A, Fabian J, Žutić I and Aliev F G 2020 Phys. Rev. Appl. 13 014030
[9] Manchon A, Koo H C, Nitta J, Frolov S M and Duine R A 2015 Nat. Mater. 14 871
[10] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[11] Koroteev Y M, Bihlmayer G, Gayone J E, Chulkov E V, Blügel S, Echenique P M and Hofmann P Phys. Rev. Lett. 93 046403
[12] Ast C R, Henk J, Ernst A, Moreschini L, Falub M C, Pacilé D, Bruno P, Kern K and Grioni M 2007 Phys. Rev. Lett. 98 186807
[13] Ishizaka K, Bahramy M S, Murakawa H, et al. 2007 Nat. Mater. 98 186807
[14] Di Sante D, Barone P, Bertacco R and Picozzi S 2013 Adv. Mater. 25 509
[15] Liebmann M, Rinaldi C, Di Sante D, et al. 2016 Adv. Mater. 28 560
[16] Zhang H, Liu C X and Zhang S C 2013 Phys. Rev. Lett. 111 066801
[17] Cao Y, Waugh J A, Zhang X W, et al. 2013 Nat. Phys. 9 499
[18] Bawden L, Riley J M, Kim C H, et al. 2015 Sci. Adv. 1 e1500495
[19] Waugh J A, Nummy T, Parham S, Liu Q, Zhang X, Zunger A and Dessau D S 2016 npj Quant. Mater. 1 16025
[20] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[21] Blöchl P E 1994 Phys. Rev. B 50 17953
[22] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Grimme S, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 154104
[25] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[26] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[27] Hirahara T, Bihlmayer G, Sakamoto Y, Yamada M, Miyazaki H, Kimura S I, Blügel S and Hasegawa S 2011 Phys. Rev. Lett. 107 166801
[28] Yang F, Miao L, Wang Z F, et al. 2012 Phys. Rev. Lett. 109 016801
[29] Miao L, Wang Z F, Ming W M, et al. 2013 Proc. Natl. Acad. Sci. USA 110 2758
[30] Kim S H, Jin K H, Park J, Kim J S, Jhi S H, Kim T H and Yeom H W 2014 Phys. Rev. B 89 155436
[31] Su S H, Chuang P Y, Chen S W, et al. 2017 Chem. Mater. 29 8992
[32] Bandurin D A, Tyurnina A V, Yu G L, et al. 2017 Nat. Nanotechnol. 12 223
[33] Ding W J, Zhu J B, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z Z and Zhu W G 2017 Nat. Commun. 8 14956
[34] Zhou Y, Wu D, Zhu Y, Cho Y, He Q, Yang X, Herrera K, Chu Z, Han Y, Downer M C, Peng H and Lai K 2017 Nano Lett. 17 5508
[35] Cui C, Hu W J, Yan X X, et al. 2018 Nano Lett. 18 1253
[36] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601
[37] Wan S, Li Y, Li W, Mao X, Zhu W and Zeng H 2018 Nanoscale 10 14885
[38] Wan S, Li Y, Li W, Mao X, Wang C, Chen C, Dong J, Nie A, Xiang J, Liu Z, Zhu W and Zeng H 2018 Adv. Funct. Mater. 29 1808606
[39] Koma A 1992 Thin Solid Films 216 72
[40] Geim A K and Grigorieva I V 2013 Nature 499 419
[41] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[42] Koo H C, Kwon J H, Eom J, Chang J, Han S H and Johnson M 2009 Science 325 1515
[43] Ming W, Wang Z F, Zhou M, Yoon M and Liu F 2016 Nano Lett. 16 404
[1] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[2] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[3] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[4] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[5] Inverted V-shaped evolution of superconducting temperature in SrBC under pressure
Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼). Chin. Phys. B, 2021, 30(7): 076301.
[6] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[7] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[8] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[9] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[10] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[11] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[12] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[13] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
[14] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[15] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[1] MANFRED FINK, TIAN REN-HE. THE BEAM TEMPERATURE AND ENERGY BROADENING OF A CHARGED-PARTICLE BEAM IN AN AXIALLY SYMMETRIC MAGNETIC FIELD[J]. Acta Phys. Sin. (Overseas Edition), 1992, 1(2): 86 -93 .
[2] LUO ZHEN-FEI, XU ZHI-ZHAN, ZHOU JIAO-YANG. ATOMIC-COHERENCE-INDUCED ENHANCEMENT OF REFRACTIVE INDEX[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(4): 252 -259 .
[3] SHI JUN-JIE. ELECTRON-INTERFACE PHONON SCATTERING IN ASYMMETRIC SEMICONDUCTOR QUANTUM WELL STRUCTURES[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(5): 356 -364 .
[4] LI YI-MIN, XIA HUI-RONG, WANG ZU-GENG, XU ZAI-XIN. SQUEEZED COHERENT THERMAL STATE AND ITS PHOTON NUMBER DISTRIBUTION[J]. Acta Phys. Sin. (Overseas Edition), 1997, 6(9): 681 -689 .
[5] Li Run-wei, Sun Ji-rong, Wang Zhi-hong, Chen Xin, Zhang Shao-ying, Shen Bao-gen. ENHANCEMENT OF FERROMAGNETIC CLUSTER INDUCED BY MAGNETIC FIELD IN THE PHASE-SEPARATED La0.5Ca0.5MnO3[J]. Chin. Phys., 2000, 9(8): 630 -633 .
[6] Wang Xin, Lu Zu-hong, Deng Hui-hua, Yu Tsing, Mao Hai-fang, Suzuki Toshishige. SURFACE CAPPING OF TiO2 COLLOIDAL NANOPARTICLES STUDIED BY FOURIER TRANSFORM RAMAN SPECTRA[J]. Chin. Phys., 2001, 10(13): 59 -64 .
[7] Li De-Sheng, Zhang Hong-Qing. The soliton-like solutions to the (2+1)-dimensional modified dispersive water-wave system[J]. Chin. Phys., 2004, 13(7): 984 -987 .
[8] Zheng Shi-Biao. Teleportation of atomic states with a weak coherent cavity field[J]. Chin. Phys., 2005, 14(9): 1825 -1827 .
[9] Zheng Shi-Wang, Tang Yi-Fa, Fu Jing-Li. Non-Noether symmetries and Lutzky conservative quantities of nonholonomic nonconservative dynamical systems[J]. Chin. Phys., 2006, 15(2): 243 -248 .
[10] Sun Jian-Cheng, Zhou Ya-Tong, Luo Jian-Guo. Prediction of chaotic systems with multidimensional recurrent least squares support vector machines[J]. Chin. Phys., 2006, 15(6): 1208 -1215 .