Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 087306    DOI: 10.1088/1674-1056/abff32
RAPID COMMUNICATION Prev   Next  

Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity

Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉)
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education&Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
Abstract  Interlayer coupling in layered semiconductors can significantly affect their optoelectronic properties. However, understanding the mechanisms behind the interlayer coupling at the atomic level is not straightforward. Here, we study modulations of the electronic structure induced by the interlayer coupling in the γ-phase of indium selenide (γ-InSe) using scanning probe techniques. We observe a strong dependence of the energy gap on the sample thickness and a small effective mass along the stacking direction, which are attributed to strong interlayer coupling. In addition, the moiré patterns observed in γ-InSe display a small band-gap variation and nearly constant local differential conductivity along the patterns. This suggests that modulation of the electronic structure induced by the moiré potential is smeared out, indicating the presence of a significant interlayer coupling. Our theoretical calculations confirm that the interlayer coupling in γ-InSe is not only of the van der Waals origin, but also exhibits some degree of hybridization between the layers. Strong interlayer coupling might play an important role in the performance of γ-InSe-based devices.
Keywords:  indium selenide (InSe)      interlayer coupling      scanning tunneling microscopy/spectroscopy (STM/STS)      density functional theory  
Received:  21 April 2021      Revised:  28 April 2021      Accepted manuscript online:  08 May 2021
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772087, 11804089, 11574350, 11904094, and 51972106), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2018JJ3025, 2019JJ50034, and 2019JJ50073), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities of China.
Corresponding Authors:  Li Zhang, Zhihui Qin     E-mail:  li_zhang@hnu.edu.cn;zhqin@hnu.edu.cn

Cite this article: 

Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉) Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity 2021 Chin. Phys. B 30 087306

[1] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[2] Wu Z B, Zhang Y Y, Li G, Du S X and Gao H J 2018 Chin. Phys. B 27 077302
[3] Meng X Q, Chen S L, Fang Y Z and Kou J L 2019 Chin. Phys. B 28 078101
[4] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604
[5] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardiére G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802
[6] Qin Z H 2017 Acta Phys. Sin. 21 216802 (in Chinese)
[7] Weller T E, Ellerby M, Saxena S S, Smith R P and Skipper N T 2005 Nat. Phys. 1 39
[8] Guo Q M and Qin Z H 2021 Acta Phys. Sin. 70 028101 (in Chinese)
[9] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K and Cao Y 2017 Nat. Nanotechnol. 12 223
[10] Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, B K M, Cheng C H, Chou F C and Chen Y T 2014 Nano Lett. 14 2800
[11] Kudrynskyi Z R, Bhuiyan M A, Makarovsky O, Greener J D G, Vdovin E E, Kovalyuk Z D, Cao Y, Mishchenko A, Novoselov K S, Beton P H, Eaves L and Patané A 2017 Phys. Rev. Lett. 119 157701
[12] Guo Y, Zhou S, Bai Y and Zhao J 2017 Appl. Phys. Lett. 110 163102
[13] Liu L, Wu L, Wang A, Liu H, Ma R, Wu K, Chen J, Zhou Z, Tian Y, Yang H, Shen C, Bao L, Qin Z, Pantelides S T and Gao H J 2020 Nano Lett. 20 6666
[14] Lugovskoi A V, Katsnelson M I and Rudenko A N 2019 Phys. Rev. Lett. 123 176401
[15] Hung N T, Nugraha A R T and Saito R 2017 Appl. Phys. Lett. 111 092107
[16] Mudd G W, Patané A, Kudrynskyi Z R, Fay M W, Makarovsky O, Eaves L, Kovalyuk Z D, Zólyomi V and Falko V 2014 Appl. Phys. Lett. 105 221909
[17] Kibirev I A, Matetskiy A V, Zotov A V and Saranin A A 2018 Appl. Phys. Lett. 112 191602
[18] Sun Y, Luo S, Zhao X G, Biswas K, Li S L and Zhang L 2018 Nanoscale 10 7991
[19] Song C, Fan F, Xuan N, Huang S, Zhang G, Wang C, Sun Z, Wu H and Yan H 2018 ACS Appl. Mater. Interfaces 10 3994
[20] Li W, Poncé S and Giustino F 2019 Nano Lett. 19 1774
[21] Mudd G W, Svatek S A, Ren T, Patané A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R and Dmitriev A I 2013 Adv. Mater. 25 5714
[22] Mudd G W, Molas M R, Chen X, Zólyomi V, Nogajewski K, Kudrynskyi Z R, Kovalyuk Z D, Yusa G, Makarovsky O, Eaves L, Potemski M, Fal'ko V I and Patané A 2016 Sci. Rep. 6 39619
[23] Zhang Z, Chen Z, Bouaziz M, Giorgetti C, Yi H, Avila J, Tian B, Shukla A, Perfetti L, Fan D, Li Y and Bendounan A 2019 ACS Nano 13 13486
[24] Chen Z, Giorgetti C, Sjakste J, Cabouat R, Véniard V, Zhang Z, Taleb-Ibrahimi A, Papalazarou E, Marsi M, Shukla A, Peretti J and Perfetti L 2018 Phys. Rev. B 97 241201
[25] Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J, Bertran F, Le Févre P, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E and Ouerghi A 2019 Phys. Rev. Mater. 3 034004
[26] Li S, Zhong C, Henning A, Sangwan V K, Zhou Q, Liu X, Rahn M S, Wells S A, Park H Y, Luxa J, Sofer Z, Facchetti A, Darancet P, Marks T J, Lauhon L J, Weiss E A and Hersam M C 2020 ACS Nano 14 3509
[27] Zhang S, Wang C G, Li M Y, Huang D, Li L J, Ji W and Wu S 2017 Phys. Rev. Lett. 119 046101
[28] Yin L J, Yang L Z, Zhang L, Wu Q, Fu X, Tong L H, Yang G, Tian Y, Zhang L and Qin Z 2020 Phys. Rev. B 102 241403
[29] Huang Y, Pan Y H, Yang R, et al. 2020 Nat. Commun. 11 2453
[30] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[34] Wijk M M v, Schuring A, Katsnelson M I and Fasolino A 2015 2D Mater. 2 034010
[35] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902
[36] Dai M, Chen H, Wang F, Hu Y, Wei S, Zhang J, Wang Z, Zhai T and Hu P 2019 ACS Nano 13 7291
[37] Errandonea D, Segura A, Manjón F J, Chevy A, Machado E, Tobias G, Ordejón P and Canadell E 2005 Phys. Rev. B 71 125206
[38] Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C, Zhang L, Yan S, Su G, Wang Z, Watanabe K, Taniguchi T, Singh D J, Zhang L and Miao F 2018 Nano Lett. 18 7538
[39] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399
[40] Shubina T V, Desrat W, Moret M, Tiberj A, Briot O, Davydov V Y, Platonov A V, Semina M A and Gil B 2019 Nat. Commun. 10 3479
[41] Magorrian S J, Zólyomi V and Fal'ko V I 2016 Phys. Rev. B 94 245431
[42] Weiser G 1992 Phys. Rev. B 45 14076
[43] Li W and Giustino F 2020 Phys. Rev. B 101 035201
[44] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2010 Phys. Rev. B 81 125427
[45] Hamer M J, Zultak J, Tyurnina A V, Zolyomi V, Terry D, Barinov A, Garner A, Donoghue J, Rooney A P, Kandyba V, Giampietri A, Graham A, Teutsch N, Xia X, Koperski M, Haigh S J, Fal'ko V I, Gorbachev R V and Wilson N R 2019 ACS Nano 13 2136
[46] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689
[47] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[48] Grüneis A, Attaccalite C, Wirtz L, Shiozawa H, Saito R, Pichler T and Rubio A 2008 Phys. Rev. B 78 205425
[49] Rudenko A N, Yuan S and Katsnelson M I 2015 Phys. Rev. B 92 085419
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!