|
|
Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity |
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力)†, Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉)‡ |
Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education&Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China |
|
|
Abstract Interlayer coupling in layered semiconductors can significantly affect their optoelectronic properties. However, understanding the mechanisms behind the interlayer coupling at the atomic level is not straightforward. Here, we study modulations of the electronic structure induced by the interlayer coupling in the γ-phase of indium selenide (γ-InSe) using scanning probe techniques. We observe a strong dependence of the energy gap on the sample thickness and a small effective mass along the stacking direction, which are attributed to strong interlayer coupling. In addition, the moiré patterns observed in γ-InSe display a small band-gap variation and nearly constant local differential conductivity along the patterns. This suggests that modulation of the electronic structure induced by the moiré potential is smeared out, indicating the presence of a significant interlayer coupling. Our theoretical calculations confirm that the interlayer coupling in γ-InSe is not only of the van der Waals origin, but also exhibits some degree of hybridization between the layers. Strong interlayer coupling might play an important role in the performance of γ-InSe-based devices.
|
Received: 21 April 2021
Revised: 28 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51772087, 11804089, 11574350, 11904094, and 51972106), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2018JJ3025, 2019JJ50034, and 2019JJ50073), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000), and the Fundamental Research Funds for the Central Universities of China. |
Corresponding Authors:
Li Zhang, Zhihui Qin
E-mail: li_zhang@hnu.edu.cn;zhqin@hnu.edu.cn
|
Cite this article:
Xiaoshuai Fu(富晓帅), Li Liu(刘丽), Li Zhang(张力), Qilong Wu(吴奇龙), Yu Xia(夏雨), Lijie Zhang(张利杰), Yuan Tian(田园), Long-Jing Yin(殷隆晶), and Zhihui Qin(秦志辉) Signatures of strong interlayer coupling in γ-InSe revealed by local differential conductivity 2021 Chin. Phys. B 30 087306
|
[1] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [2] Wu Z B, Zhang Y Y, Li G, Du S X and Gao H J 2018 Chin. Phys. B 27 077302 [3] Meng X Q, Chen S L, Fang Y Z and Kou J L 2019 Chin. Phys. B 28 078101 [4] Heinrich B, Burrowes C, Montoya E, Kardasz B, Girt E, Song Y Y, Sun Y and Wu M 2011 Phys. Rev. Lett. 107 066604 [5] Brihuega I, Mallet P, González-Herrero H, Trambly de Laissardiére G, Ugeda M M, Magaud L, Gómez-Rodríguez J M, Ynduráin F and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802 [6] Qin Z H 2017 Acta Phys. Sin. 21 216802 (in Chinese) [7] Weller T E, Ellerby M, Saxena S S, Smith R P and Skipper N T 2005 Nat. Phys. 1 39 [8] Guo Q M and Qin Z H 2021 Acta Phys. Sin. 70 028101 (in Chinese) [9] Bandurin D A, Tyurnina A V, Yu G L, Mishchenko A, Zolyomi V, Morozov S V, Kumar R K, Gorbachev R V, Kudrynskyi Z R, Pezzini S, Kovalyuk Z D, Zeitler U, Novoselov K S, Patane A, Eaves L, Grigorieva I V, Fal'ko V I, Geim A K and Cao Y 2017 Nat. Nanotechnol. 12 223 [10] Tamalampudi S R, Lu Y Y, U R K, Sankar R, Liao C D, B K M, Cheng C H, Chou F C and Chen Y T 2014 Nano Lett. 14 2800 [11] Kudrynskyi Z R, Bhuiyan M A, Makarovsky O, Greener J D G, Vdovin E E, Kovalyuk Z D, Cao Y, Mishchenko A, Novoselov K S, Beton P H, Eaves L and Patané A 2017 Phys. Rev. Lett. 119 157701 [12] Guo Y, Zhou S, Bai Y and Zhao J 2017 Appl. Phys. Lett. 110 163102 [13] Liu L, Wu L, Wang A, Liu H, Ma R, Wu K, Chen J, Zhou Z, Tian Y, Yang H, Shen C, Bao L, Qin Z, Pantelides S T and Gao H J 2020 Nano Lett. 20 6666 [14] Lugovskoi A V, Katsnelson M I and Rudenko A N 2019 Phys. Rev. Lett. 123 176401 [15] Hung N T, Nugraha A R T and Saito R 2017 Appl. Phys. Lett. 111 092107 [16] Mudd G W, Patané A, Kudrynskyi Z R, Fay M W, Makarovsky O, Eaves L, Kovalyuk Z D, Zólyomi V and Falko V 2014 Appl. Phys. Lett. 105 221909 [17] Kibirev I A, Matetskiy A V, Zotov A V and Saranin A A 2018 Appl. Phys. Lett. 112 191602 [18] Sun Y, Luo S, Zhao X G, Biswas K, Li S L and Zhang L 2018 Nanoscale 10 7991 [19] Song C, Fan F, Xuan N, Huang S, Zhang G, Wang C, Sun Z, Wu H and Yan H 2018 ACS Appl. Mater. Interfaces 10 3994 [20] Li W, Poncé S and Giustino F 2019 Nano Lett. 19 1774 [21] Mudd G W, Svatek S A, Ren T, Patané A, Makarovsky O, Eaves L, Beton P H, Kovalyuk Z D, Lashkarev G V, Kudrynskyi Z R and Dmitriev A I 2013 Adv. Mater. 25 5714 [22] Mudd G W, Molas M R, Chen X, Zólyomi V, Nogajewski K, Kudrynskyi Z R, Kovalyuk Z D, Yusa G, Makarovsky O, Eaves L, Potemski M, Fal'ko V I and Patané A 2016 Sci. Rep. 6 39619 [23] Zhang Z, Chen Z, Bouaziz M, Giorgetti C, Yi H, Avila J, Tian B, Shukla A, Perfetti L, Fan D, Li Y and Bendounan A 2019 ACS Nano 13 13486 [24] Chen Z, Giorgetti C, Sjakste J, Cabouat R, Véniard V, Zhang Z, Taleb-Ibrahimi A, Papalazarou E, Marsi M, Shukla A, Peretti J and Perfetti L 2018 Phys. Rev. B 97 241201 [25] Henck H, Pierucci D, Zribi J, Bisti F, Papalazarou E, Girard J C, Chaste J, Bertran F, Le Févre P, Sirotti F, Perfetti L, Giorgetti C, Shukla A, Rault J E and Ouerghi A 2019 Phys. Rev. Mater. 3 034004 [26] Li S, Zhong C, Henning A, Sangwan V K, Zhou Q, Liu X, Rahn M S, Wells S A, Park H Y, Luxa J, Sofer Z, Facchetti A, Darancet P, Marks T J, Lauhon L J, Weiss E A and Hersam M C 2020 ACS Nano 14 3509 [27] Zhang S, Wang C G, Li M Y, Huang D, Li L J, Ji W and Wu S 2017 Phys. Rev. Lett. 119 046101 [28] Yin L J, Yang L Z, Zhang L, Wu Q, Fu X, Tong L H, Yang G, Tian Y, Zhang L and Qin Z 2020 Phys. Rev. B 102 241403 [29] Huang Y, Pan Y H, Yang R, et al. 2020 Nat. Commun. 11 2453 [30] Horcas I, Fernández R, Gómez-Rodríguez J M, Colchero J, Gómez-Herrero J and Baro A M 2007 Rev. Sci. Instrum. 78 013705 [31] Blöchl P E 1994 Phys. Rev. B 50 17953 [32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [33] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [34] Wijk M M v, Schuring A, Katsnelson M I and Fasolino A 2015 2D Mater. 2 034010 [35] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902 [36] Dai M, Chen H, Wang F, Hu Y, Wei S, Zhang J, Wang Z, Zhai T and Hu P 2019 ACS Nano 13 7291 [37] Errandonea D, Segura A, Manjón F J, Chevy A, Machado E, Tobias G, Ordejón P and Canadell E 2005 Phys. Rev. B 71 125206 [38] Zeng J, He X, Liang S J, Liu E, Sun Y, Pan C, Wang Y, Cao T, Liu X, Wang C, Zhang L, Yan S, Su G, Wang Z, Watanabe K, Taniguchi T, Singh D J, Zhang L and Miao F 2018 Nano Lett. 18 7538 [39] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater. 28 2399 [40] Shubina T V, Desrat W, Moret M, Tiberj A, Briot O, Davydov V Y, Platonov A V, Semina M A and Gil B 2019 Nat. Commun. 10 3479 [41] Magorrian S J, Zólyomi V and Fal'ko V I 2016 Phys. Rev. B 94 245431 [42] Weiser G 1992 Phys. Rev. B 45 14076 [43] Li W and Giustino F 2020 Phys. Rev. B 101 035201 [44] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2010 Phys. Rev. B 81 125427 [45] Hamer M J, Zultak J, Tyurnina A V, Zolyomi V, Terry D, Barinov A, Garner A, Donoghue J, Rooney A P, Kandyba V, Giampietri A, Graham A, Teutsch N, Xia X, Koperski M, Haigh S J, Fal'ko V I, Gorbachev R V and Wilson N R 2019 ACS Nano 13 2136 [46] Lu J, Bao D L, Qian K, Zhang S, Chen H, Lin X, Du S X and Gao H J 2017 ACS Nano 11 1689 [47] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [48] Grüneis A, Attaccalite C, Wirtz L, Shiozawa H, Saito R, Pichler T and Rubio A 2008 Phys. Rev. B 78 205425 [49] Rudenko A N, Yuan S and Katsnelson M I 2015 Phys. Rev. B 92 085419 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|