Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 077803    DOI: 10.1088/1674-1056/ac051f
Special Issue: SPECIAL TOPIC — Twistronics
SPECIAL TOPIC—Twistronics Prev   Next  

Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices

J A Crosse1,2 and Pilkyung Moon1,2,3,†
1 Arts and Sciences, New York University Shanghai, Shanghai 200122, China;
2 NYU-ECNU Institute of Physics at NYU Shanghai, Shanghai 200062, China;
3 Department of Physics, New York University, New York 10003, USA
Abstract  We study the magneto-optical conductivity of a number of van der Waals heterostructures, namely, twisted bilayer graphene, AB-AB and AB-BA stacked twisted double bilayer graphene and monolayer graphene and AB-stacked bilayer graphene on hexagonal boron nitride. As the magnetic field increases, the absorption spectrum exhibits a self-similar recursive pattern reflecting the fractal nature of the energy spectrum. Whilst twisted bilayer graphene displays only weak circular dichroism, the other four structures display strong circular dichroism with monolayer graphene and AB-stacked bilayer graphene on hexagonal boron nitride being particularly pronounced owing to strong inversion symmetry breaking properties of the hexagonal boron nitride layer. As the left and right circularly polarized light interact with these structures differently, plane-polarized incident light undergoes a Faraday rotation and gains an ellipticity when transmitted. The size of the respective angles is on the order of a degree.
Keywords:  2D-materials      van der Waals heterostructures      magneto-optical conductivity      graphene  
Received:  19 February 2021      Revised:  21 May 2021      Accepted manuscript online:  26 May 2021
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  78.20.Ls (Magneto-optical effects)  
  78.67.Wj (Optical properties of graphene)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12050410228 and 12074260) and the Fund from the Science and Technology Commission of Shanghai Municipality, China (Grant No. 19ZR1436400).
Corresponding Authors:  Pilkyung Moon     E-mail:  pilkyung.moon@nyu.edu

Cite this article: 

J A Crosse and Pilkyung Moon Faraday rotations, ellipticity, and circular dichroism in magneto-optical spectrum of moiré superlattices 2021 Chin. Phys. B 30 077803

[1] Geim A K and Grigorieva I V 2013 Nature 499 419
[2] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[3] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
[4] Li C, Zhou P and Zhang D W 2017 J. Semicond. 38 031005
[5] Yankowitz M, Ma Q, Jarillo-Herrero P and LeRoy B J 2019 Nat. Rev. Phys. 1 112
[6] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[7] Nedoliuk I O, Hu S, Geim A K and Kuzmenko A B 2019 Nat. Nanotechnol. 14 756
[8] Crassee I, Levallois J, Walter A L, Ostler M, Bostwick A, Rotenberg E, Seyller T, van der Marel D and Kuzmenko A B 2011 Nat. Phys. 7 48
[9] Liu J and Dai X 2020 Npj Comput. Mater. 6 57
[10] Hofstadter D 1976 Phys. Rev. B 14 2239
[11] Rammal R 1985 J. Physique 46 1345
[12] Zhang Z Z, Chang K and Peeters F M 2008 Phys. Rev. B 77 235411
[13] Moon P and Koshino M 2012 Phys. Rev. B 85 195458
[14] Moon P and Koshino M 2014 Phys. Rev. B 90 155406
[15] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427
[16] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, MuchaKruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal’ko V I and Geim A K 2013 Nature 497 594
[17] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
[18] Yu G L, Gorbachev R V, Tu J S, Kretinin A V, Cao Y, Jalil R, Withers F, Ponomarenko L A, Piot B A, Potemski M, Elias D C, Chen X, Watanabe K, Taniguchi T, Grigorieva I V, Novoselov K S, Fal’ko V I, Geim A K and Mishchenko A 2014 Nat. Phys. 10 525
[19] Moon P and Koshino M 2013 Phys. Rev. B 88 241412(R)
[20] Crosse J A, Nakatsuji N, Koshino M and Moon P 2020 Phys. Rev. B 102 035421
[21] Schaibley J, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[22] Zhou X Y, Zhang R, Sun J P, Zou Y L, Zhang D, Lou W K, Cheng F, Zhou G H, Zhai F and Chang K 2015 Sci. Rep. 5 12295
[23] Lopes dos Santos J, Peres N and Castro Neto A 2007 Phys. Rev. Lett. 99 256802
[24] Bistritzer R and MacDonald A 2011 Proc. Natl. Acad. Sci. 108 12233
[25] Kindermann M and First P 2011 Phys. Rev. B 83 045425
[26] Lopes dos Santos J, Peres N M R and Castro Neto A H 2012 Phys. Rev. B 86 1554499
[27] Moon P and Koshino M 2013 Phys. Rev. B 87 205404
[28] Koshino M 2015 New J. Phys. 17 015014
[29] Koshino M and Moon P 2015 J. Phys. Soc. Jpn. 84 121001
[30] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087
[31] Koshino M 2019 Phys. Rev. B 99 235406
[32] McCann E and Koshino M 2013 Rep. Prog. Phys. 76 056503
[33] Brown E 1969 Solid State Phys. 22 313
[34] Chang M C and Niu Q 1996 Phys. Rev. B 53 7010
[35] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[36] Ando T 2005 J. Phys. Soc. Jpn. 74 777
[37] Shon N H and Ando T 1998 J. Phys. Soc. Jpn. 67 2421
[38] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[39] Pfannkuche D and Gerhardts R R 1992 Phys. Rev. B 46 12606
[40] Inoue M 1962 J. Phys. Soc. Jpn. 17 808
[41] Toy W, Dresselhaus M and Dresselhaus G 1977 Phys. Rev. B 15 4077
[42] Chiu K W, Lee T K, and Quinn J J 1976 Surf. Sci. 58 182
[43] O’Connell R F and Wallace G 1982 Phys. Rev. B 26 2231
[44] Morimoto T, Hatsugai Y and Aoki H 2009 Phys. Rev. Lett. 103 116803
[45] Chebrolu N R, Chittari B L and Jung J 2019 Phys. Rev. B 99 235417
[46] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021
[47] Rickhaus P, Zheng G, Lado J L, Lee Y, Kurzmann A, Eich M, Pisoni R, Tong C, Garreis R, Gold C, Masseroni M, Taniguchi T, Wantanabe K, Ihn T and Ensslin K 2019 Nano Lett. 19 8821
[48] Burg G W, Zh Ju, Taniguchi T, Watanabe K MacDonald A H and Tutuc E 2019 Phys. Rev. Lett. 123 197702
[49] Choi Y W and Choi H J 2019 Phys. Rev. B 100 201402
[50] Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P and Vishwanath A 2019 Nat. Commun. 10 5333
[51] Abergel D S L and Fal’ko V I 2007 Phys. Rev. B 75 155430
[1] Direct growth of graphene films without catalyst on flexible glass substrates by PECVD
Rui-Xia Miao(苗瑞霞), Chen-He Zhao(赵晨鹤), Shao-Qing Wang(王少青), Wei Ren(任卫), Yong-Feng Li(李永锋), Ti-Kang Shu(束体康), and Ben Yang(杨奔). Chin. Phys. B, 2021, 30(9): 098101.
[2] Strain-modulated ultrafast magneto-optic dynamics of graphene nanoflakes decorated with transition-metal atoms
Yiming Zhang(张一鸣), Jing Liu(刘景), Chun Li(李春), Wei Jin(金蔚), Georgios Lefkidis, and Wolfgang Hübner. Chin. Phys. B, 2021, 30(9): 097702.
[3] First-principles study of plasmons in doped graphene nanostructures
Xiao-Qin Shu(舒晓琴), Xin-Lu Cheng(程新路), Tong Liu(刘彤), and Hong Zhang(张红). Chin. Phys. B, 2021, 30(9): 097301.
[4] Role of graphene in improving catalytic behaviors of AuNPs/MoS2/Gr/Ni-F structure in hydrogen evolution reaction
Xian-Wu Xiu(修显武), Wen-Cheng Zhang(张文程), Shu-Ting Hou(侯淑婷), Zhen Li(李振), Feng-Cai Lei(雷风采), Shi-Cai Xu(许士才), Chong-Hui Li(李崇辉), Bao-Yuan Man(满宝元), Jing Yu(郁菁), and Chao Zhang(张超). Chin. Phys. B, 2021, 30(8): 088801.
[5] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[6] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[7] Synthesis of SiC/graphene nanosheet composites by helicon wave plasma
Jia-Li Chen(陈佳丽), Pei-Yu Ji(季佩宇), Cheng-Gang Jin(金成刚), Lan-Jian Zhuge(诸葛兰剑), and Xue-Mei Wu(吴雪梅). Chin. Phys. B, 2021, 30(7): 075201.
[8] Bilayer twisting as a mean to isolate connected flat bands in a kagome lattice through Wigner crystallization
Jing Wu(吴静), Yue-E Xie(谢月娥), Ming-Xing Chen(陈明星), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Sheng-Bai Zhang(张绳百), and Yuan-Ping Chen(陈元平). Chin. Phys. B, 2021, 30(7): 077104.
[9] Dual-wavelength ultraviolet photodetector based on vertical (Al,Ga)N nanowires and graphene
Min Zhou(周敏), Yukun Zhao(赵宇坤), Lifeng Bian(边历峰), Jianya Zhang(张建亚), Wenxian Yang(杨文献), Yuanyuan Wu(吴渊渊), Zhiwei Xing(邢志伟), Min Jiang(蒋敏), and Shulong Lu(陆书龙). Chin. Phys. B, 2021, 30(7): 078506.
[10] Fabrication of sulfur-doped cove-edged graphene nanoribbons on Au(111)
Huan Yang(杨欢), Yixuan Gao(高艺璇), Wenhui Niu(牛雯慧), Xiao Chang(常霄), Li Huang(黄立), Junzhi Liu(刘俊治), Yiyong Mai(麦亦勇), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(7): 077306.
[11] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[12] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[13] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[14] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[15] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
No Suggested Reading articles found!