Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 076301    DOI: 10.1088/1674-1056/abfbcc
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Inverted V-shaped evolution of superconducting temperature in SrBC under pressure

Ru-Yi Zhao(赵如意)1, Xun-Wang Yan(闫循旺)2, and Miao Gao(高淼)1,†
1 Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China;
2 College of Physics and Engineering, Qufu Normal University, Qufu 273165, China
Abstract  Based on density functional first-principles calculations and anisotropic Eliashberg equations, we have investigated the electronic structure, lattice dynamics, and phonon-mediated superconductivity in newly synthesized layered compound SrBC under pressure. Different from LiBC and MgB2, our calculations surprisingly reveal that SrBC is isotropic in compressibility, due to the accumulation of substantial electrons in the interstitial region. We find that the Sr phonons strongly couple with B-2pz orbital and the interstitial states, giving rise to a two-gap superconductivity in SrBC, whose transition temperature shows an inverted V-shaped dependence on pressure. The maximal transition temperature is about 22 K at 50 GPa. On both sides of 50 GPa, the transition temperature exhibits quasi-linear variation with positive and negative slopes, respectively. Such a variation of transition temperature is infrequent among phonon-mediated superconductors. The competition between enhanced electron-phonon matrix element and hardened phonons plays an essential role in governing the behavior of the critical temperature.
Keywords:  SrBC      phonon-mediated superconductivity      anisotropic Eliashberg theory      first-principles calculation      maximally localized Wannier functions  
Received:  19 March 2021      Revised:  23 April 2021      Accepted manuscript online:  27 April 2021
PACS:  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  63.20.kd (Phonon-electron interactions)  
  74.20.Pq (Electronic structure calculations)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974194 and 11974207) and K. C. Wong Magna Fund in Ningbo University.
Corresponding Authors:  Miao Gao     E-mail:  gaomiao@nbu.edu.cn

Cite this article: 

Ru-Yi Zhao(赵如意), Xun-Wang Yan(闫循旺), and Miao Gao(高淼) Inverted V-shaped evolution of superconducting temperature in SrBC under pressure 2021 Chin. Phys. B 30 076301

[1] An J M and Pickett W E 2001 Phys. Rev. Lett. 86 4366
[2] Kong Y, Dolgov O V, Jepsen O and Andersen O K 2001 Phys. Rev. B 64 020501
[3] Kortus J, Mazin I I, Belashchenko K D, Antropov V P and Boyer L L 2001 Phys. Rev. Lett. 86 4656
[4] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Phys. Rev. B 66 020513
[5] Choi H J, Roundy D, Sun H, Cohen M L and Louie S G 2002 Nature 418 758
[6] Rosner H, Kitaigorodsky A and Pickett W E 2002 Phys. Rev. Lett. 88 127001
[7] Fogg A M, Meldrum J, Darling G R, Claridge J B and Rosseinsky M J 2006 J. Am. Chem. Soc. 128 10043
[8] Bharathi A, Balaselvi S J, Premila M, Sairam T N, Reddy G L N, Sundar C S and Hariharan Y 2002 Solid State Commun. 124 423
[9] Souptela D, Hossainb Z, Behra G, Lösera W and Geibel C 2003 Solid State Commun. 125 17
[10] Fogg A M, Chalker P R, Claridge J B, Darling G R and Rosseinsky M J 2003 Phys. Rev. B 67 245106
[11] Fogg A M, Claridge J B, Darling G R and Rosseinsky M J 2003 Chem. Commun. 12 1348
[12] Gao M, Lu Z Y and Xiang T 2015 Phys. Rev. B 91 045132
[13] Bazhirov T, Sakai Y, Saito S and Cohen M L 2014 Phys. Rev. B 89 045136
[14] Gao M, Yan X W, Lu Z Y and Xiang T 2020 Phys. Rev. B 101 094501
[15] Haque E, Hossain M A and Stampfl C 2019 Phys. Chem. Chem Phys. 21 8767
[16] Zhu L, Borstad G M, Liu H, Guńka P A, Guerette M, Dolyniuk J A, Meng Y, Greenberg E, Prakapenka V B, Chaloux B L, Epshteyn A, Cohen R E and Strobel T A 2020 Sci. Adv. 6 8361
[17] Giannozzi P, Baroni S, Bonini N, et al. 2020 J. Phys.: Condens. Matter 21 395502
[18] Giustino F, Cohen M L and Louie S G 2007 Phys. Rev. B 76 165108
[19] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[20] Hamann D R 2013 Phys. Rev. B 88 085117
[21] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616
[22] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[23] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902
[24] Poncé S, Margine E R, Verdi C and Giustino F 2016 Comp. Phys. Commun. 209 116
[25] Choi H J, Cohen M L and Louie S G 2003 Physica C 385 66
[26] Margine E R and Giustino F 2013 Phys. Rev. B 87 024505
[27] Lazicki A, Yoo C S, Cynn H, Evans W J, Pickett W E, Olamit J, Liu K and Ohishi Y 2007 Phys. Rev. B 75 054507
[28] Buzea C and Yamashita T 2001 Supercond. Sci. Technol. 14 115
[29] Eiguren A and Ambrosch-Draxl C 2008 Phys. Rev. B 78 045124
[30] Calandra M, Profeta G and Mauri F 2010 Phys. Rev. B 82 165111
[31] Richardson C F and Ashcroft N W 1997 Phys. Rev. Lett. 78 118
[32] Lee K H, Chang K J and Cohen M L 1995 Phys. Rev. B 52 1425
[33] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[34] Monteverde M, Nu Núñez-Regueiro M, Rogado N, Regan K A, Hayward M A, He T, Loureiro S M and Cava R J 2001 Science 292 75
[35] Lorenz B, Meng R L and Chu C W 2001 Phys. Rev. B 64 012507
[36] Tomita T, Hamlin J J, Schilling J S, Hinks D G and Jorgensen J D 2001 Phys. Rev. B 64 092505
[37] Saito E, Taknenobu T, Ito T, Iwasa Y, Prassides K and Arima T 2001 J. Phys.: Condens. Matter 13 L267
[38] Deemyad S, Schilling J S, Jorgensen J D and Hinks D G 2001 Physica C 361 227
[39] Loa I and Syassen K 2001 Solid State Commun. 118 279
[40] Pogrebnyakov A V, Redwing J M, Raghavan S, Vaithyanathan V Schlom D G, Xu S Y, Li Q, Tenne D A, Soukiassian A, Xi X X, Johannes M D, Kasinathan D, Pickett W E, Wu J S and Spence J C H 2004 Phys. Rev. Lett. 93 147006
[41] Gubser D U and Webb A W 1975 Phys. Rev. Lett. 35 104
[42] Thomasson J, Ayache C, Spain I L and Villedieu M 1990 J. Appl. Phys. 68 5933
[43] Hamlin J J, Tissen V G and Schilling J S 2006 Phys. Rev. B 73 094522
[44] Yabuuchi T, Matsuoka T, Nakamoto Y and Shimizu K 2006 J. Phys. Soc. Jpn. 75 083703
[45] Balster H and Wittig J 1975 J. Low Temp. Phys. 21 377
[46] Porsch F and Holzapfel W B 1993 Phys. Rev. Lett. 70 4087
[47] Tissen V G, Ponyatovskii E G, Nefedova M V, Porsch F and Holzapfel W B 1996 Phys. Rev. B 53 8238
[48] Schilling J S 2007 Physica C 182 460
[49] Chen W, Semenok D V, Troyan I A, Ivanova A G, Huang X, Oganov A R and Cui T 2020 Phys. Rev. B 102 134510
[50] Wan X, Dong J, Weng H and Xing D Y 2001 Phys. Rev. B 65 012502
[1] Passivation and dissociation of Pb-type defects at a-SiO2/Si interface
Xue-Hua Liu(刘雪华), Wei-Feng Xie(谢伟锋), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(9): 097101.
[2] Giant Rashba-like spin-orbit splitting with distinct spin texture in two-dimensional heterostructures
Jianbao Zhu(朱健保), Wei Qin(秦维), and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(8): 087307.
[3] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[4] In situ formed FeS2@CoS cathode for long cycling life lithium-ion battery
Xin Wang(王鑫), Bojun Wang(汪博筠), Jiachao Yang(杨家超), Qiwen Ran(冉淇文), Jian Zou(邹剑), Pengyu Chen(陈鹏宇), Li Li(李莉), Liping Wang(王丽平), and Xiaobin Niu(牛晓滨). Chin. Phys. B, 2021, 30(8): 088201.
[5] Magnetoelectric coupling effect of polarization regulation in BiFeO3/LaTiO3 heterostructures
Chao Jin(金超), Feng-Zhu Ren(任凤竹), Wei Sun(孙伟), Jing-Yu Li(李静玉), Bing Wang(王冰), and Qin-Fen Gu(顾勤奋). Chin. Phys. B, 2021, 30(7): 076105.
[6] Anomalous bond-length behaviors of solid halogens under pressure
Min Wu(吴旻), Ye-Feng Wu(吴烨峰), and Yi Ma(马毅). Chin. Phys. B, 2021, 30(7): 076401.
[7] Prediction of scandium tetraboride from first-principles calculations: Crystal structures, phase stability, mechanical properties,and hardness
Bin-Hua Chu(初斌华) and Yuan Zhao(赵元). Chin. Phys. B, 2021, 30(7): 076107.
[8] A strategy to improve the electrochemical performance of Ni-rich positive electrodes: Na/F-co-doped LiNi0.6Mn0.2Co0.2O2
Hui Wan(万惠), Zhixiao Liu(刘智骁), Guangdong Liu(刘广东), Shuaiyu Yi(易帅玉), Fei Gao(高飞), Huiqiu Deng(邓辉球), Dingwang Yuan(袁定旺), and Wangyu Hu(胡望宇). Chin. Phys. B, 2021, 30(7): 073101.
[9] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[10] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[11] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[12] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[13] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[14] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[15] First-principles calculations of F-, Cl-, and N-related defects of amorphous SiO 2 and their impacts on carrier trapping and proton release
Xin Gao(高鑫), Yunliang Yue(乐云亮), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2021, 30(4): 047104.
No Suggested Reading articles found!