CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries |
Junping Hu(胡军平)1, Zhangyin Wang(王章寅)1, Genrui Zhang(张根瑞)1, Yu Liu(刘宇)1, Ning Liu(刘宁)1, Wei Li(李未)1, Jianwen Li(李健文)1, Chuying Ouyang(欧阳楚英)2,†, and Shengyuan A. Yang(杨声远)3 |
1 Key Laboratory of Optoelectronic Materials and New Energy Technology, Nanchang Institute of Technology, Nanchang 330099, China; 2 Department of Physics, Laboratory of Computational Materials Physics, Jiangxi Normal University, Nanchang 330022, China; 3 Research Laboratory for Quantum Materials, Singapore University of Technology and Design, Singapore 487372, Singapore |
|
|
Abstract When developing high performance lithium-ion batteries, high capacity is one of the key indicators. In the last decade, the progress of two-dimensional (2D) materials has provided new opportunities for boosting the storage capacity. Here, based on first-principles calculation method, we predict that MnN monolayer, a recently proposed 2D nodal-loop half-metal containing the metallic element Mn, can be used as a super high-capacity lithium-ion batteries anode. Its theoretical capacity is above 1554 mAh/g, more than four times that of graphite. Meanwhile, it also satisfies other requirements for a good anode material. Specifically, we demonstrate that MnN is mechanically, dynamically, and thermodynamically stable. The configurations before and after lithium adsorption exhibit good electrical conductivity. The study of Li diffusion on its surface reveals a very low diffusion barrier (∼ 0.12 eV), indicating excellent rate performance. The calculated average open-circuit voltage of the corresponding half-cell at full charge is also very low (∼ 0.22 V), which facilitates higher operating voltage. In addition, the lattice changes of the material during lithium intercalation are very small (∼ 1.2%-∼ 4.8%), which implies good cycling performance. These results suggest that 2D MnN can be a very promising anode material for lithium-ion batteries.
|
Received: 17 December 2020
Revised: 15 January 2021
Accepted manuscript online: 20 January 2021
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.47.Jk
|
(Photoelectrochemical cells, photoelectrochromic and other hybrid electrochemical energy storage devices)
|
|
96.15.Pf
|
(Physical properties of materials)
|
|
Fund: Project supported by the Scientific Research Fund of Jiangxi Provincial Education Department, China (Grant No. GJJ190962), the National Natural Science Foundation of China (Grant Nos. 11904153, 51962010, 61961027, 12064026, and 12064014), and Jiangxi Province Natural Science Foundation, China (Grant No. 20202BABL211008). |
Corresponding Authors:
†Corresponding author. E-mail: cyouyang@jxnu.edu.cn
|
Cite this article:
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远) Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries 2021 Chin. Phys. B 30 046302
|
1 Dunn B, Kamath H and Tarascon J M 2011 Science 334 928 2 Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q and Fu Z W 2017 Nat. Commun. 8 566 3 Lu J, Chen Z, Ma Z, Pan F, Curtiss L A and Amine K 2016 Nat. Nanotech. 11 1031 4 Fan E, Li L, Wang Z, Lin J, Huang Y, Yao Y Y, Chen R J and Wu F 2020 Chem. Rev. 120 7020 5 Shi S Q, Gao J, Liu Y, Zhao Y, Wu Q, Ju W W, Ouyang C Y and Xiao R J 2016 Chin. Phys. B 25 018212 6 Hu J P, Xu B, Ouyang C Y, Zhang Y and Yang S A 2016 RSC Adv. 6 27467 7 Shao D, Tang D P, Mai Y J and Zhang L Z 2013 J. Mater. Chem. A 1 15068 8 Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I and Yushin G 2011 Science 334 75 9 Shen Y F, Qian J F, Yang H X, Zhong F P and Ai X P 2020 Small 16 1907602 10 Zeng H H, Xing B L, Zhang C T, Chen L J, Zhao H H, Han X F, Yi G X, Huang G X, Zhang C X and Cao Y J 2020 Energ. Fuel. 34 2480 11 Thomas S, Jung H, Kim S, Jun B, Lee C H and Lee S U https://doi.org/10.1016/j.carbon.2019.03.085 2019 Carbon 148 344 12 Fan K, Ying Y R, Li X Y, Luo X and Huang H T 2019 J. Phys. Chem. C 123 18207 13 Park H, Lee D and Song T 2019 J. Power Sources 414 377 14 Gao L, Ge X, Zuo Z C, Wang F, Liu X Y, Lv M M, Shi S Q, Xu L T, Liu T F, Zhou Q H, Ye X and Xiao S X 2020 Nano Lett. 20 7333 15 Wang Z Q, Wang D, Zou Z Y, Song T, Ni D X, Li Z Z, Shao X C, Yin W J, Wang Y C, Luo W W, Wu M S, Avdeev M, Xu B, Shi S Q, Ouyang C Y and Chen L Q 2020 Natl. Sci. Rev. 7 1768 16 Dahn J R, Zheng T, Liu Y H and Xue J S 1995 Science 270 590 17 Tang Q, Zhou Z and Shen P W 2012 J. Am. Chem. Soc. 134 16909 18 Jing Y, Zhou Z, Cabrera C R and Chen Z. 2013 J. Phys. Chem. C 117 25409 19 Er D, Li J, Naguib M, Gogotsi Y and Shenoy V B 2014 ACS Appl. Mater. Interface 6 11173 20 Hu J P, Xu B, Yang S A, Guan S, Ouyang C Y and Yao Y G 2015 ACS Appl. Mater. Interface 7 24016 21 Jiang H R, Lu Z, Wu M C, Ciucci F and Zhao T S 2016 Nano Energy 23 97 22 Zhang X M, Hu J P, Cheng Y, Yang H Y, Yao Y G and Yang S A 2016 Nanoscale 8 15340 23 Shi L, Zhao T S, Xu A and Xu J B 2016 J. Mater. Chem. A 4 16377 24 Wang D S, Gao Y, Liu Y H, Jin D, Gogotsi Y, Meng X, Du F, Chen G and Wei Y J 2017 J. Phys. Chem. C 121 13025 25 Makaremi M, Mortazavi B, Rabczuk T, Ozin G A and Singh C V 2018 ACS Appl. Nano Mater. 2 127 26 Yuan G H, Bo T, Qi X, Liu P F, Huang Z and Wang B T 2019 App. Surf. Sci. 480 448 27 Zhang X M, Jin L, Dai X F, Chen G F and Liu G D 2020 App. Surf. Sci. 527 146849 28 Wu Y Y, Bo T, Zhu X, Wang Z, Wu J, Li Y and Wang B T 2020 App. Surf. Sci. 513 145821 29 Lei S F, Chen X F, Xiao B B, Zhang W T and Liu J 2019 ACS Appl. Mater. Inter. Interface 11 28830 30 Mortazavi B, Shahrokhi M, Madjet M E, Makaremi M, Ahzi S and Rabczuk T 2019 Carbon 141 291 31 Wu Y Y, Bo T, Zhang J, Lu Z, Wang Z, Li Y and Wang B T 2019 Phys. Chem. Chem. Phys. 21 19513 32 Zhang J N, Xu L Q, Yang C, Zhang X Y, Ma L, Zhang M and Lu J 2020 Appl. Surf. Sci. 510 145493 33 Hu J P, Ouyang C Y, Yang S A and Yang H Y 2019 Nanoscale Horiz. 4 457 34 Zhuang Y, Zou Z Y, Lu B, Li Y J, Wang D, Avdeev M and Shi S Q 2020 Chin. Phys. B 29 068202 35 Wang S S, Yu Z M, Liu Y, Jiao Y, Guan S, Sheng X L and Yang S A 2019 Phys. Rev. Mater. 3 084201 36 Xu Z M and Zhu H 2018 J. Phys. Chem. C 122 14918 37 Sorokin P B, Kvashnin A G, Zhu Z and Tomanek D 2014 Nano Lett. 14 7126 38 Santonen T and Aitio A 2012 Manganese and rehnium In Patty's Toxicology (6th Edn.) (New York: John Wiley & Sons, Inc) p. 609 39 Kresse G and Joubert J 1999 Phys. Rev. B. 59 1758 40 Blöchl P E 1994 Phys. Rev. B. 50 17953 41 Kresse G and Hafner J 1993 Phys. Rev. B. 47 558 42 Kresse G 1996 Phys. Rev. B. 54 11169 43 Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 44 Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 45 Nye J F 1985 Physical properties of crystals(Clarendon Press) 46 Cadelano E, Palla P L, Giordano S and Colombo L 2010 Phys. Rev. B 82 235414 47 Wang W L and Li Z B. 2011 J Appl. Phys. 109 114308 48 Henkelman G, Uberuaga B P and Jònsson H 2000 J. Chem. Phys. 113 9901 49 Zhang Y 2017 Comput. Conden. Matt. 10 35 50 Xiao H L, Wu H and Chi X B 2009 Proceedings of GridNets', October 8-10, 2008, Berlin, Heidelberg p. 35 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|