Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027803    DOI: 10.1088/1674-1056/abd77f

Modulation of the second-harmonic generation in MoS2 by graphene covering

Chunchun Wu(吴春春)1,2,†, Nianze Shang(尚念泽)2,†, Zixun Zhao(赵子荀)2,†, Zhihong Zhang(张智宏)2, Jing Liang(梁晶)2, Chang Liu(刘畅)2, Yonggang Zuo(左勇刚)3, Mingchao Ding(丁铭超)3, Jinhuan Wang(王金焕)2, Hao Hong(洪浩)2,‡, Jie Xiong(熊杰)1,§, and Kaihui Liu(刘开辉)2,
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Collaborative Innovation Center of Quantum Matter, Academy of Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing 100871, China; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
Abstract  Nonlinear optical frequency mixing, which describes new frequencies generation by exciting nonlinear materials with intense light field, has drawn vast interests in the field of photonic devices, material characterization, and optical imaging. Investigating and manipulating the nonlinear optical response of target materials lead us to reveal hidden physics and develop applications in optical devices. Here, we report the realization of facile manipulation of nonlinear optical responses in the example system of MoS2 monolayer by van der Waals interfacial engineering. We found that, the interfacing of monolayer graphene will weaken the exciton oscillator strength in MoS2 monolayer and correspondingly suppress the second harmonic generation (SHG) intensity to 30% under band-gap resonance excitation. While with off-resonance excitation, the SHG intensity would enhance up to 130%, which is conjectured to be induced by the interlayer excitation between MoS2 and graphene. Our investigation provides an effective method for controlling nonlinear optical properties of two-dimensional materials and therefore facilitates their future applications in optoelectronic and photonic devices.
Keywords:  two-dimensional materials      second harmonic generation (SHG)      graphene      dielectric screening  
Received:  08 December 2020      Revised:  18 December 2020      Accepted manuscript online:  30 December 2020
PACS:  78.67.Wj (Optical properties of graphene)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by Beijing Natural Science Foundation, China (Grant No. JQ19004), Beijing Excellent Talents Training Support, China (Grant No. 2017000026833ZK11), the National Natural Science Foundation of China (Grant Nos. 52025023, 51991340, and 51991342), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300903 and 2016YFA0300804), the Key R&D Program of Guangdong Province, China (Grant Nos. 2019B010931001, 2020B010189001, 2018B010109009, and 2018B030327001), the Beijing Municipal Science & Technology Commission, China (Grant No. Z191100007219005), the Beijing Graphene Innovation Program (Grant No. Z181100004818003), Bureau of Industry and Information Technology of Shenzhen (Graphene platform 201901161512), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. KYTDPT20181011104202253), and the China Postdoctoral Science Foundation (Grant No. 2020M680177).
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: §Corresponding author. E-mail: Corresponding author. E-mail:   

Cite this article: 

Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉) Modulation of the second-harmonic generation in MoS2 by graphene covering 2021 Chin. Phys. B 30 027803

1 Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
2 Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
3 Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
4 Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
5 Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Nanotechnol. 8 634
6 Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
7 Fei Z, Palomaki T, Wu S, Zhao W, Cai X, Sun B, Nguyen P, Finney J, Xu X and Cobden D H 2017 Nat. Phys. 13 677
8 Liu X J and Zhang Y W 2018 Chin. Phys. B 27 034402
9 Wang J, Guo C, Guo W L, Wang L, Shi W Z and Chen X S 2019 Chin. Phys. B 28 046802
10 Hung T Y T, Rustagi A, Zhang S J, Upadhyaya P and Chen Z H 2020 Infomat 2 968
11 Zou C J, Zhang H B, Chen Y, Feng S, Wu L S, Zhang J, Yu T, Shang J Z and Cong C X 2020 Infomat 2 585
12 Li Y, Rao Y, Mak K F, You Y, Wang S, Dean C R and Heinz T F 2013 Nano Lett. 13 3329
13 Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A and Urbaszek B 2015 Phys. Rev. Lett. 114 097403
14 Liu H, Li Y, You Y S, Ghimire S, Heinz T F and Reis D A 2016 Nat. Phys. 13 262
15 Saynatjoki A, Karvonen L, Rostami H, Autere A, Mehravar S, Lombardo A, Norwood R A, Hasan T, Peyghambarian N, Lipsanen H, Kieu K, Ferrari A C, Polini M and Sun Z 2017 Nat. Commun. 8 893
16 Wen X L, Gong Z B and Li D H 2019 Infomat 1 317
17 Zeng Z X S, Wang X and Pan A L 2020 Acta Phys. Sin. 69 184210 (in Chinese)
18 Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K, Hone J C and Zhang X 2014 Science 344 488
19 Cheng J, Jiang T, Ji Q, Zhang Y, Li Z, Shan Y, Zhang Y, Gong X, Liu W and Wu S 2015 Adv. Mater. 27 4069
20 Guo J, Zhao J L, Huang D Z, Wang Y Z, Zhang F, Ge Y Q, Song Y F, Xing C Y, Fan D Y and Zhang H 2019 Nanoscale 11 6235
21 Cheng Y, Hong H, Zhao H, Wu C, Pan Y, Liu C, Zuo Y, Zhang Z, Xie J, Wang J, Yu D, Ye Y, Meng S and Liu K 2020 Nano Lett. 20 8053
22 Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F, Demmerle F, Boehm G, Amann M C, Alu A and Belkin M A 2014 Nature 511 65
23 Cheng J L, Vermeulen N and Sipe J E 2014 New J. Phys. 16 053041
24 Aouani H, Rahmani M, Navarro-Cia M and Maier S A 2014 Nat. Nanotechnol. 9 290
25 Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S F, Yan J Q, Mandrus D G, Yao W and Xu X D 2015 Nat. Nanotechnol. 10 407
26 Liang J, Zhang J, Li Z Z, Hong H, Wang J H, Zhang Z H, Zhou X, Qiao R X, Xu J Y, Gao P, Liu Z R, Liu Z F, Sun Z P, Meng S, Liu K H and Yu D P 2017 Nano Lett. 17 7539
27 Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T and Wu S W 2018 Nat. Photon. 12 634
28 Soavi G, Wang G, Rostami H, Purdie D G, De Fazio D, Ma T, Luo B R, Wang J J, Ott A K, Yoon D, Bourelle S A, Muench J E, Goykhman I, Dal Conte S, Celebrano M, Tomadin A, Polini M, Cerullo G and Ferrari A C 2018 Nat. Nanotechnol. 13 583
29 Wen X L, Xu W G, Zhao W J, Khurgin J B and Xiong Q H 2018 Nano Lett. 18 1686
30 Shi J J, Li Y, Kang M, He X B, Halas N J, Nordlander P, Zhang S P and Xu H X 2019 Nano Lett. 19 3838
31 Hong H, Liu C, Cao T, Jin C, Wang S, Wang F and Liu K 2017 Adv. Mater. Interfaces 4 1601054
32 Wang G C, Wu L M, Yan J H, Zhou Z, Ma R S, Yang H F, Li J J, Gu C Z, Bao L H, Du S X and Gao H J 2018 Chin. Phys. B 27 077303
33 Cheng Y, Huang C, Hong H, Zhao Z X and Liu K H 2019 Chin. Phys. B 28 107304
34 Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
35 Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I and Tartakovskii A I 2019 Nature 567 81
36 Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2019 Nature 567 76
37 Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66
38 Tran K, Moody G, Wu F, et al. 2019 Nature 567 71
39 Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427
40 Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K 2013 Nature 497 594
41 Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
42 Jin C H, Kim J, Suh J, Shi Z W, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wu J Q and Wang F 2017 Nat. Phys. 13 127
43 Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C and Chang W H 2014 Acs Nano 8 2951
44 He J Q, Kumar N, Bellus M Z, Chiu H Y, He D W, Wang Y S and Zhao H 2014 Nat. Commun. 5 5622
45 Yuan L, Chung T F, Kuc A, Wan Y, Xu Y, Chen Y P, Heine T and Huang L B 2018 Sci. Adv. 4 e1700324
46 Chen Y Z, Li Y J, Zhao Y D, Zhou H Z and Zhu H M 2019 Sci. Adv. 5 eaax9958
[1] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[2] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[3] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[4] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[5] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[6] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[7] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[8] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[9] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[10] Light-modulated electron retroreflection and Klein tunneling in a graphene-based n-p-n junction
Xingfei Zhou(周兴飞), Ziying Wu(吴子瀛), Yuchen Bai(白宇晨), Qicheng Wang(王起程), Zhentao Zhu(朱震涛), Wei Yan(闫巍), and Yafang Xu(许亚芳). Chin. Phys. B, 2022, 31(4): 047301.
[11] TiS2-graphene heterostructures enabling polysulfide anchoring and fast electrocatalyst for lithium-sulfur batteries: A first-principles calculation
Wenyang Zhao(赵文阳), Li-Chun Xu(徐利春), Yuhong Guo(郭宇宏), Zhi Yang(杨致), Ruiping Liu(刘瑞萍), and Xiuyan Li(李秀燕). Chin. Phys. B, 2022, 31(4): 047101.
[12] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[13] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[14] Transition state and formation process of Stone—Wales defects in graphene
Jian-Hui Bai(白建会), Yin Yao(姚茵), and Ying-Zhao Jiang(姜英昭). Chin. Phys. B, 2022, 31(3): 036102.
[15] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
No Suggested Reading articles found!