Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027803    DOI: 10.1088/1674-1056/abd77f
RAPID COMMUNICATION Prev   Next  

Modulation of the second-harmonic generation in MoS2 by graphene covering

Chunchun Wu(吴春春)1,2,†, Nianze Shang(尚念泽)2,†, Zixun Zhao(赵子荀)2,†, Zhihong Zhang(张智宏)2, Jing Liang(梁晶)2, Chang Liu(刘畅)2, Yonggang Zuo(左勇刚)3, Mingchao Ding(丁铭超)3, Jinhuan Wang(王金焕)2, Hao Hong(洪浩)2,‡, Jie Xiong(熊杰)1,§, and Kaihui Liu(刘开辉)2,
1 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; 2 State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, Collaborative Innovation Center of Quantum Matter, Academy of Advanced Interdisciplinary Studies, School of Physics, Peking University, Beijing 100871, China; 3 Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
Abstract  Nonlinear optical frequency mixing, which describes new frequencies generation by exciting nonlinear materials with intense light field, has drawn vast interests in the field of photonic devices, material characterization, and optical imaging. Investigating and manipulating the nonlinear optical response of target materials lead us to reveal hidden physics and develop applications in optical devices. Here, we report the realization of facile manipulation of nonlinear optical responses in the example system of MoS2 monolayer by van der Waals interfacial engineering. We found that, the interfacing of monolayer graphene will weaken the exciton oscillator strength in MoS2 monolayer and correspondingly suppress the second harmonic generation (SHG) intensity to 30% under band-gap resonance excitation. While with off-resonance excitation, the SHG intensity would enhance up to 130%, which is conjectured to be induced by the interlayer excitation between MoS2 and graphene. Our investigation provides an effective method for controlling nonlinear optical properties of two-dimensional materials and therefore facilitates their future applications in optoelectronic and photonic devices.
Keywords:  two-dimensional materials      second harmonic generation (SHG)      graphene      dielectric screening  
Received:  08 December 2020      Revised:  18 December 2020      Accepted manuscript online:  30 December 2020
PACS:  78.67.Wj (Optical properties of graphene)  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by Beijing Natural Science Foundation, China (Grant No. JQ19004), Beijing Excellent Talents Training Support, China (Grant No. 2017000026833ZK11), the National Natural Science Foundation of China (Grant Nos. 52025023, 51991340, and 51991342), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300903 and 2016YFA0300804), the Key R&D Program of Guangdong Province, China (Grant Nos. 2019B010931001, 2020B010189001, 2018B010109009, and 2018B030327001), the Beijing Municipal Science & Technology Commission, China (Grant No. Z191100007219005), the Beijing Graphene Innovation Program (Grant No. Z181100004818003), Bureau of Industry and Information Technology of Shenzhen (Graphene platform 201901161512), Guangdong Innovative and Entrepreneurial Research Team Program (Grant No. 2016ZT06D348), the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. KYTDPT20181011104202253), and the China Postdoctoral Science Foundation (Grant No. 2020M680177).
Corresponding Authors:  These authors contributed equally to this work. Corresponding author. E-mail: haohong@pku.edu.cn §Corresponding author. E-mail: jiexiong@uestc.edu.cn Corresponding author. E-mail: khliu@pku.edu.cn   

Cite this article: 

Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉) Modulation of the second-harmonic generation in MoS2 by graphene covering 2021 Chin. Phys. B 30 027803

1 Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
2 Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
3 Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887
4 Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
5 Jones A M, Yu H, Ghimire N J, Wu S, Aivazian G, Ross J S, Zhao B, Yan J, Mandrus D G, Xiao D, Yao W and Xu X 2013 Nat. Nanotechnol. 8 634
6 Ye Z, Cao T, O'Brien K, Zhu H, Yin X, Wang Y, Louie S G and Zhang X 2014 Nature 513 214
7 Fei Z, Palomaki T, Wu S, Zhao W, Cai X, Sun B, Nguyen P, Finney J, Xu X and Cobden D H 2017 Nat. Phys. 13 677
8 Liu X J and Zhang Y W 2018 Chin. Phys. B 27 034402
9 Wang J, Guo C, Guo W L, Wang L, Shi W Z and Chen X S 2019 Chin. Phys. B 28 046802
10 Hung T Y T, Rustagi A, Zhang S J, Upadhyaya P and Chen Z H 2020 Infomat 2 968
11 Zou C J, Zhang H B, Chen Y, Feng S, Wu L S, Zhang J, Yu T, Shang J Z and Cong C X 2020 Infomat 2 585
12 Li Y, Rao Y, Mak K F, You Y, Wang S, Dean C R and Heinz T F 2013 Nano Lett. 13 3329
13 Wang G, Marie X, Gerber I, Amand T, Lagarde D, Bouet L, Vidal M, Balocchi A and Urbaszek B 2015 Phys. Rev. Lett. 114 097403
14 Liu H, Li Y, You Y S, Ghimire S, Heinz T F and Reis D A 2016 Nat. Phys. 13 262
15 Saynatjoki A, Karvonen L, Rostami H, Autere A, Mehravar S, Lombardo A, Norwood R A, Hasan T, Peyghambarian N, Lipsanen H, Kieu K, Ferrari A C, Polini M and Sun Z 2017 Nat. Commun. 8 893
16 Wen X L, Gong Z B and Li D H 2019 Infomat 1 317
17 Zeng Z X S, Wang X and Pan A L 2020 Acta Phys. Sin. 69 184210 (in Chinese)
18 Yin X B, Ye Z L, Chenet D A, Ye Y, O'Brien K, Hone J C and Zhang X 2014 Science 344 488
19 Cheng J, Jiang T, Ji Q, Zhang Y, Li Z, Shan Y, Zhang Y, Gong X, Liu W and Wu S 2015 Adv. Mater. 27 4069
20 Guo J, Zhao J L, Huang D Z, Wang Y Z, Zhang F, Ge Y Q, Song Y F, Xing C Y, Fan D Y and Zhang H 2019 Nanoscale 11 6235
21 Cheng Y, Hong H, Zhao H, Wu C, Pan Y, Liu C, Zuo Y, Zhang Z, Xie J, Wang J, Yu D, Ye Y, Meng S and Liu K 2020 Nano Lett. 20 8053
22 Lee J, Tymchenko M, Argyropoulos C, Chen P Y, Lu F, Demmerle F, Boehm G, Amann M C, Alu A and Belkin M A 2014 Nature 511 65
23 Cheng J L, Vermeulen N and Sipe J E 2014 New J. Phys. 16 053041
24 Aouani H, Rahmani M, Navarro-Cia M and Maier S A 2014 Nat. Nanotechnol. 9 290
25 Seyler K L, Schaibley J R, Gong P, Rivera P, Jones A M, Wu S F, Yan J Q, Mandrus D G, Yao W and Xu X D 2015 Nat. Nanotechnol. 10 407
26 Liang J, Zhang J, Li Z Z, Hong H, Wang J H, Zhang Z H, Zhou X, Qiao R X, Xu J Y, Gao P, Liu Z R, Liu Z F, Sun Z P, Meng S, Liu K H and Yu D P 2017 Nano Lett. 17 7539
27 Jiang T, Huang D, Cheng J L, Fan X D, Zhang Z H, Shan Y W, Yi Y F, Dai Y Y, Shi L, Liu K H, Zeng C G, Zi J, Sipe J E, Shen Y R, Liu W T and Wu S W 2018 Nat. Photon. 12 634
28 Soavi G, Wang G, Rostami H, Purdie D G, De Fazio D, Ma T, Luo B R, Wang J J, Ott A K, Yoon D, Bourelle S A, Muench J E, Goykhman I, Dal Conte S, Celebrano M, Tomadin A, Polini M, Cerullo G and Ferrari A C 2018 Nat. Nanotechnol. 13 583
29 Wen X L, Xu W G, Zhao W J, Khurgin J B and Xiong Q H 2018 Nano Lett. 18 1686
30 Shi J J, Li Y, Kang M, He X B, Halas N J, Nordlander P, Zhang S P and Xu H X 2019 Nano Lett. 19 3838
31 Hong H, Liu C, Cao T, Jin C, Wang S, Wang F and Liu K 2017 Adv. Mater. Interfaces 4 1601054
32 Wang G C, Wu L M, Yan J H, Zhou Z, Ma R S, Yang H F, Li J J, Gu C Z, Bao L H, Du S X and Gao H J 2018 Chin. Phys. B 27 077303
33 Cheng Y, Huang C, Hong H, Zhao Z X and Liu K H 2019 Chin. Phys. B 28 107304
34 Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43
35 Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I, Molas M R, Koperski M, Watanabe K, Taniguchi T, Novoselov K S, Gorbachev R V, Shin H S, Fal'ko V I and Tartakovskii A I 2019 Nature 567 81
36 Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A and Wang F 2019 Nature 567 76
37 Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W and Xu X 2019 Nature 567 66
38 Tran K, Moody G, Wu F, et al. 2019 Nature 567 71
39 Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427
40 Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K 2013 Nature 497 594
41 Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598
42 Jin C H, Kim J, Suh J, Shi Z W, Chen B, Fan X, Kam M, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wu J Q and Wang F 2017 Nat. Phys. 13 127
43 Hsu W T, Zhao Z A, Li L J, Chen C H, Chiu M H, Chang P S, Chou Y C and Chang W H 2014 Acs Nano 8 2951
44 He J Q, Kumar N, Bellus M Z, Chiu H Y, He D W, Wang Y S and Zhao H 2014 Nat. Commun. 5 5622
45 Yuan L, Chung T F, Kuc A, Wan Y, Xu Y, Chen Y P, Heine T and Huang L B 2018 Sci. Adv. 4 e1700324
46 Chen Y Z, Li Y J, Zhao Y D, Zhou H Z and Zhu H M 2019 Sci. Adv. 5 eaax9958
[1] Floquet bands and photon-induced topological edge states of graphene nanoribbons
Weijie Wang(王威杰), Xiaolong Lü(吕小龙), and Hang Xie(谢航). Chin. Phys. B, 2021, 30(6): 066701.
[2] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[3] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[4] Graphene-tuned threshold gain to achieve optical pulling force on microparticle
Hong-Li Chen(陈鸿莉) and Yang Huang(黄杨). Chin. Phys. B, 2021, 30(6): 064205.
[5] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[6] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[7] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[8] NBN-doped nanographene embedded with five- and seven-membered rings on Au(111) surface
Huan Yang(杨欢), Yun Cao(曹云), Yixuan Gao(高艺璇), Yubin Fu(付钰彬), Li Huang(黄立), Junzhi Liu(刘俊治), Xinliang Feng(冯新亮), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(5): 056802.
[9] Intercalation of germanium oxide beneath large-area and high-quality epitaxial graphene on Ir(111) substrate
Xueyan Wang(王雪艳), Hui Guo(郭辉), Jianchen Lu(卢建臣), Hongliang Lu(路红亮), Xiao Lin(林晓), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(4): 048102.
[10] Quantum plasmon enhanced nonlinear wave mixing in graphene nanoflakes
Hanying Deng(邓寒英), Changming Huang(黄长明), Yingji He(何影记), and Fangwei Ye(叶芳伟). Chin. Phys. B, 2021, 30(4): 044213.
[11] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[12] Super-strong interactions between multivalent anions and graphene
Xing Liu(刘星) and Guosheng Shi(石国升). Chin. Phys. B, 2021, 30(4): 046801.
[13] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏, and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[14] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
[15] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
No Suggested Reading articles found!