INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influence of an inserted bar on the flow regimes in the hopper |
Yi Peng(彭毅)1,2, Sheng Zhang(张晟)1, Mengke Wang(王梦柯)1,, Guanghui Yang(杨光辉)1, Jiangfeng Wan(万江锋)3, Liangwen Chen(陈良文)1, and Lei Yang(杨磊)1 |
1 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 East China University of Technology, Nanchang 330000, China |
|
|
Abstract We investigated the influence of an inserted bar on the hopper flow experimentally. Three geometrical parameters, size of upper outlet D1, size of lower outlet D0, and the height of bar H, are variables here. With varying H we found three regimes: one transition from clogging to a surface flow and another transition from a surface flow to a dense flow. For the dense flow, the flow rate follows Beverloo's law and there is a saturation of inclination of free surface θ . We plotted the velocity field and there is a uniform linear relation between the particle velocity and depth from the free surface. We also found that the required value of D1 to guarantee the connectivity of flow is little smaller than D0. For the transition from a surface flow to a dense flow, there is a jump of flow rate and the minimum θ for flowing is two degrees larger than the repose angle.
|
Received: 25 August 2020
Revised: 23 October 2020
Accepted manuscript online: 01 December 2020
|
PACS:
|
81.05.Rm
|
(Porous materials; granular materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11705256 and 11905272), National Postdoctoral Program for Innovative Talents, China (Grant No. BX201700258), and West Light Foundation of the Chinese Academy of Sciences (Grant No. 2018-98). |
Corresponding Authors:
†Corresponding author. E-mail: wangmk@impcas.ac.cn
|
Cite this article:
Yi Peng(彭毅), Sheng Zhang(张晟), Mengke Wang(王梦柯), Guanghui Yang(杨光辉), Jiangfeng Wan(万江锋), Liangwen Chen(陈良文), and Lei Yang(杨磊) Influence of an inserted bar on the flow regimes in the hopper 2021 Chin. Phys. B 30 028101
|
1 Beverloo W A, H A Leniger and van de Velde J 1961 Chemical Engineering Science 15 260 2 Brown R L 1961 Nature 191 458 3 Nedderman R, Tuzun U, Savage S and Houlsby G 1982 Chemical Engineering Science 37 1597 4 Hirshfeld D, Radzyner Y and Rapaport D C 1997 Phys. Rev. E 56 4404 5 Mankoc C, Janda A, Arévalo R, Pastor J, Zuriguel M, Garcimart\'in I and Maza D 2008 Granular Matter 10 469 6 Hilton J E and Cleary P W 2011 Phys. Rev. E 84 011307 7 Janda A, Zuriguel I and Maza D 2012 Phys. Rev. Lett. 108 248001 8 Saleh K, Golshan S and Zarghami R 2018 Chemical Engineering Science 192 1011 9 Bertho Y, Giorgiutti-Dauphine F and Hulin J P 2003 Phys. Rev. Lett. 90 144301 10 Anand A, Curtis J S, Wassgren C R, Hancock B C and Ketterhagen W R 2008 Chemical Engineering Science 63 5821 11 Zhang S, Lin P, Wang C L, Tian Y, Wan J F and Yang L 2014 Granular Matter 16 857 12 Vidyapati V and Subramaniam S2013 Industrial & Engineering Chemistry Research 52 13171 13 Rubio-Largo S M, Janda A, Maza D, Zuriguel I and Hidalgo R C 2015 Phys. Rev. Lett. 114 238002 14 Lin P, Zhang S, Qi J, Xing Y M and Yang L 2015 Physica A 417 29 15 Tuzun U and R M Nedderman1982 Powder Technology 31 27 16 Babout L, Grudzien K, Maire E and Withers P J 2013 Chemical Engineering Science 97 210 17 Johanson J R 1968 Powder Technology 1 328 18 Tuzun U and Nedderman R M 1985 Chemical Engineering Science 40 325 19 Yang S C and Hsiau S S 2001 Powder Technology 120 244 20 Johanson K 2006 Powder Technology 170 109 21 Endo K, Reddy K A and Katsuragi H 2017 Phys. Rev. Fluids 2 094302 22 Zuriguel I, Janda A, Garcimartin A, Lozano C, Arevalo R and Maza D 2011 Phys. Rev. Lett. 107 278001 23 Li X D, Wang J F, Zhang S, Lin P and Yang L2017 PloS One 12 e0187435 24 Wojcik M, Tejchman J and Enstad G G 2012 Powder Technology 222 15 25 Delannay R, Louge M, Richard P, Taberlet N and Valance A 2007 Nat. Mater. 6 99 26 Taberlet N, Richard P, Valance A, Losert W, Pasini José Miguel, Jenkins J T and Delannay R2003 Phys. Rev. Lett. 91 264 27 Bi W, Delannay R, Richard P, Taberlet N and Valance A2005 J. Phys.: Condens. Matter 17 S2457 28 Mart\'inez E, Gonz\'alez-Lezcano A, Batista-Leyva A J and Altshuler E 2016 Phys. Rev. E 93 062906 29 Yang L and Zhan W L 2015 Science China-Technological Sciences 58 1705 30 Kristan M, Ales Leonardis, Matas J, Felsberg M and Pflugfelder R2018 IEEE International Conference on Computer Vision Workshops 31 Yang G H, Zhang S, Lin P, Tian Y, Wan J and Yang L 2016 Granular Matter 18 1 32 Wan J F, Zhang S, Tian Y and Lin P 2016 Journal of Nuclear Science and Technology 53 1809 33 Brown R L and Richards J C 1965 Rheologica Acta 4 153 34 Zhang S, Yang G, Lin P, Chen L and Yang L 2019 Euro. Phys. J. E 42 14 35 Orpe A V and Khakhar D V 2007 Journal of Fluid Mechanics 571 1 36 Jop P, Forterre Y and Pouliquen O 2005 Journal of Fluid Mechanics 541 167 37 Pouliquen O and Renaut N 1996 Journal De Physique Ii 6 923 38 Marteau E and Andrade J E 2018 Acta Geotechnica 13 549 39 Nagel S 1992 Rev. Mod. Phys. 64 321 40 Zheng P2011 Acta Phys. Sin. 60 680 (in Chinese) 41 Taberlet N, Richard P, Henry E and Delannay R 2004 Europhys. Lett. 68 515 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|