Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(2): 027802    DOI: 10.1088/1674-1056/abb802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems

Hong-Yu Tu(屠宏宇)1, Ji-Chao Cheng(程基超)1, Gen-Cai Pan(潘根才)1, Lu Han(韩露)1, Bin Duan(段彬)1, Hai-Yu Wang(王海宇)2, Qi-Dai Chen(陈岐岱)2, Shu-Ping Xu(徐抒平)3, Zhen-Wen Dai(戴振文)1, and Ling-Yun Pan(潘凌云)1,
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 State Key Laboratory on Integrated Optoelectronics, College of Electronics, Science and Engineering, Jilin University, Changchun 130012, China; 3 State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
Abstract  Following the gradual maturation of synthetic techniques for nanomaterials, exciton-plasmon composites have become a research hot-spot due to their controllable energy transfer through electromagnetic fields on the nanoscale. However, most reports ignore fluorescence resonance energy transfer (FRET) under electrostatic repulsion conditions. In this study, the FRET process is investigated in both electrostatic attraction and electrostatic repulsion systems. By changing the Au:quantum dot ratio, local-field induced FRET can be observed with a lifetime of ns and a fast component of hundreds of ps. These results indicate that the intrinsic transfer process can only elucidated by considering both steady and transient state information.
Keywords:  fluorescence resonance energy transfer (FRET)      quantum dots      excitons-plasmon composites  
Received:  06 August 2020      Revised:  02 September 2020      Accepted manuscript online:  14 September 2020
PACS:  78.67.Hc (Quantum dots)  
  33.20.-t (Molecular spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904049 and 61575079), the Science and Technology Development Program of Jilin Province, China (Grant No. 20180101230JC), the Fundamental Research Funds for the Central Universities (Grant No. JCKYQKJC45), China Postdoctoral Science Foundation (Grant No. 201003537), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education, China.
Corresponding Authors:  Corresponding author. E-mail: ply@jlu.edu.cn   

Cite this article: 

Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云) Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems 2021 Chin. Phys. B 30 027802

1 Nagy P and Szöllösi J 2008 Cytometry Part A: The Journal of the International Society for Analytical Cytology 73 388
2 Chen Y, Munechika K and Ginger D S 2007 Nano Lett. 7 690
3 Litvin A P, Ushakova E V, Parfenov P S, Fedorov A V and Baranov A V 2014 J. Phys. Chem. C 118 6531
4 Guanxin Y, Lianghong L, Meifang G, Xianyi Z, Xianfeng Z, Xuehan J, Hong Z and Zhifeng C 2012 Chin. Phys. B 21 107801
5 Wu Q, Cao F, Kong L and Yang X 2019 Chin. Phys. B 28 118103
6 Hammer N I, Emrick T and Barnes M D 2007 Nanoscale Res. Lett. 2 282
7 Mohammed A H 2014 Engineering and Technology Journal 32 647
8 Nahm C, Jung D R, Kim, Nam S, Choi H, Hong S, Hwang T, Moon T and Park B 2013 Appl. Phys. Express 6 052001
9 Wang X and Guo X 2009 The Analyst 134 1348
10 Wang H Y, Su D, Yang S, Du X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L and Sun B Q 2015 Chin. Phys. Lett. 32 107804
11 Chen F, Lin Q, Wang H, Wang L, Zhang F, Du Z, Shen H and Li L S 2016 Nanoscale Res. Lett. 11 376
12 Zhong M and Ye Y 2015 Canadian Journal of Physics 93 1330
13 Kochuveedu S T and Kim D H 2014 Nanoscale 6 4966
14 Lunz M, Gerard V A, Gun'ko Y K, Lesnyak V, Gaponik N, Susha A S, Rogach A L and Bradley A L 2011 Nano Lett. 11 3341
15 Komarala V K, Bradley A L, Rakovich Y P, Byrne S J, Gun'ko Y K and Rogach A L 2008 Appl. Phys. Lett. 93 123102
16 Komarala V K, Rakovich Y P, Bradley A, Byrne S J, Gun'ko Y K, Gaponik N and Eychm\"uller A 2006 Appl. Phys. Lett. 89 253118
17 Chen C T, Lai C W, Liou Y R, Pan H J, Chou P T and Chen Y F 2012 Appl. Phys. Lett. 101 041908
18 Yang J Y and Chen H J 2019 Acta Phys. Sin. 68 246302 (in Chinese)
19 Singh A K, Gryczynski K G, McDaniel F D, Park S Y, Kim M and Neogi A 2010 Appl. Phys. Express 3 102201
20 Ochiai T, Isozaki K, Pincella F, Taguchi T, Nittoh K-i and Miki K 2013 Appl. Phys. Express 6 102001
21 Tanaka T, Totoki Y, Fujiki A, Zettsu N, Miyake Y, Akai-Kasaya M, Saito A, Ogawa T and Kuwahara Y 2011 Appl. Phys. Express 4 032105
22 Zhang Q Q, Hu J Y, Jing M Y, Li B, Qin C B, Li Y, Xiao L T and Jia S T 2019 Acta Phys. Sin. 68 017803 (in Chinese)
23 Qin C C, Cui M H, Song D D and He W aps.68.20190291 2019 Acta Phys. Sin. 68 107801 (in Chinese)
24 Kikawada M, Ono A, Inami W and Kawata Y 2015 Appl. Phys. Express 8 072401
25 Hepojoki S, Nurmi V, Vaheri A, Hedman K, Vapalahti O and Hepojoki J 2014 PloS One 9 e106432
26 Baldo B, Paganetti P, Grueninger S, Marcellin D, Kaltenbach L S, Lo D C, Semmelroth M, Zivanovic A, Abramowski D and Smith D 2012 Chemistry & Biology 19 264
27 Cohen N, Zahavy E, Zichel R and Fisher M 2016 Analyt. Bioanalyt. Chem. 408 5179
28 Feng Y, Liu L, Hu S, Ren Y, Liu Y, Xiu J and Zhang X 2016 Opt. Express 24 19627
29 Ragab A, Gadallah A S, Da Ros T, Mohamed M and Azzouz I 2014 Opt. Commun. 314 86
30 Rodr\'íguez-Fern\'andez J, Perez-Juste J, Mulvaney P and Liz-Marzan L M 2005 J. Phys. Chem. B 109 14257
31 Pan L Y, Zhang Y L, Wang H Y, Liu H, Luo J S, Xia H, Zhao L, Chen Q D, Xu S P and Gao B R 2011 Nanoscale 3 2882
32 Li L, Zhao J F, Won N, Jin H, Kim S and Chen J Y 2012 Nanoscale Res. Lett. 7 386
33 Duong H D, Lee J W and Rhee J I 0342 Biosensing and Nanomedicine VII, p. 916613
34 Song H Y, Wong T I, Guo S, Deng J, Tan C, Gorelik S and Zhou X 2015 Sensors and Actuators B: Chemical 221 207
35 Mandal A and Tamai N 2008 J. Phys. Chem. C 112 8244
36 Mandal A and Tamai N 2011 Chem. Phys. Lett. 507 248
37 Saxena A M, Udgaonkar J B and Krishnamoorthy G 2006 J. Molecular Biology 359 174
38 Wu K, Rodr\'íguez-Còrdoba W E, Yang Y and Lian T 2013 Nano Lett. 13 5255
39 Govorov A O, Bryant G W, Zhang W, Skeini T, Lee J, Kotov N A, Slocik J M and Naik R R 2006 Nano Lett. 6 984
40 Zhao W W, Wang J, Xu J J and Chen H Y 2011 Chem. Commun. 47 10990
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[10] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[11] Exciton emission dynamics in single InAs/GaAs quantum dots due to the existence of plasmon-field-induced metastable states in the wetting layer
Junhui Huang(黄君辉), Hao Chen(陈昊), Zhiyao Zhuo(卓志瑶), Jian Wang(王健), Shulun Li(李叔伦), Kun Ding(丁琨), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Desheng Jiang(江德生), Xiuming Dou(窦秀明), and Baoquan Sun(孙宝权). Chin. Phys. B, 2021, 30(9): 097805.
[12] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[13] Suppression of leakage effect of Majorana bound states in the T-shaped quantum-dot structure
Wei-Jiang Gong(公卫江), Yu-Hang Xue(薛宇航), Xiao-Qi Wang(王晓琦), Lian-Lian Zhang(张莲莲), and Guang-Yu Yi(易光宇). Chin. Phys. B, 2021, 30(7): 077307.
[14] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[15] Anisotropic exciton Stark shift in hemispherical quantum dots
Shu-Dong Wu(吴曙东). Chin. Phys. B, 2021, 30(5): 053201.
No Suggested Reading articles found!