CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems |
Hong-Yu Tu(屠宏宇)1, Ji-Chao Cheng(程基超)1, Gen-Cai Pan(潘根才)1, Lu Han(韩露)1, Bin Duan(段彬)1, Hai-Yu Wang(王海宇)2, Qi-Dai Chen(陈岐岱)2, Shu-Ping Xu(徐抒平)3, Zhen-Wen Dai(戴振文)1, and Ling-Yun Pan(潘凌云)1,† |
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 State Key Laboratory on Integrated Optoelectronics, College of Electronics, Science and Engineering, Jilin University, Changchun 130012, China; 3 State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China |
|
|
Abstract Following the gradual maturation of synthetic techniques for nanomaterials, exciton-plasmon composites have become a research hot-spot due to their controllable energy transfer through electromagnetic fields on the nanoscale. However, most reports ignore fluorescence resonance energy transfer (FRET) under electrostatic repulsion conditions. In this study, the FRET process is investigated in both electrostatic attraction and electrostatic repulsion systems. By changing the Au:quantum dot ratio, local-field induced FRET can be observed with a lifetime of ns and a fast component of hundreds of ps. These results indicate that the intrinsic transfer process can only elucidated by considering both steady and transient state information.
|
Received: 06 August 2020
Revised: 02 September 2020
Accepted manuscript online: 14 September 2020
|
PACS:
|
78.67.Hc
|
(Quantum dots)
|
|
33.20.-t
|
(Molecular spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10904049 and 61575079), the Science and Technology Development Program of Jilin Province, China (Grant No. 20180101230JC), the Fundamental Research Funds for the Central Universities (Grant No. JCKYQKJC45), China Postdoctoral Science Foundation (Grant No. 201003537), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the Ministry of Education, China. |
Corresponding Authors:
†Corresponding author. E-mail: ply@jlu.edu.cn
|
Cite this article:
Hong-Yu Tu(屠宏宇), Ji-Chao Cheng(程基超), Gen-Cai Pan(潘根才), Lu Han(韩露), Bin Duan(段彬), Hai-Yu Wang(王海宇), Qi-Dai Chen(陈岐岱), Shu-Ping Xu(徐抒平), Zhen-Wen Dai(戴振文), and Ling-Yun Pan(潘凌云) Investigation of fluorescence resonance energy transfer ultrafast dynamics in electrostatically repulsed and attracted exciton-plasmon systems 2021 Chin. Phys. B 30 027802
|
1 Nagy P and Szöllösi J 2008 Cytometry Part A: The Journal of the International Society for Analytical Cytology 73 388 2 Chen Y, Munechika K and Ginger D S 2007 Nano Lett. 7 690 3 Litvin A P, Ushakova E V, Parfenov P S, Fedorov A V and Baranov A V 2014 J. Phys. Chem. C 118 6531 4 Guanxin Y, Lianghong L, Meifang G, Xianyi Z, Xianfeng Z, Xuehan J, Hong Z and Zhifeng C 2012 Chin. Phys. B 21 107801 5 Wu Q, Cao F, Kong L and Yang X 2019 Chin. Phys. B 28 118103 6 Hammer N I, Emrick T and Barnes M D 2007 Nanoscale Res. Lett. 2 282 7 Mohammed A H 2014 Engineering and Technology Journal 32 647 8 Nahm C, Jung D R, Kim, Nam S, Choi H, Hong S, Hwang T, Moon T and Park B 2013 Appl. Phys. Express 6 052001 9 Wang X and Guo X 2009 The Analyst 134 1348 10 Wang H Y, Su D, Yang S, Du X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L and Sun B Q 2015 Chin. Phys. Lett. 32 107804 11 Chen F, Lin Q, Wang H, Wang L, Zhang F, Du Z, Shen H and Li L S 2016 Nanoscale Res. Lett. 11 376 12 Zhong M and Ye Y 2015 Canadian Journal of Physics 93 1330 13 Kochuveedu S T and Kim D H 2014 Nanoscale 6 4966 14 Lunz M, Gerard V A, Gun'ko Y K, Lesnyak V, Gaponik N, Susha A S, Rogach A L and Bradley A L 2011 Nano Lett. 11 3341 15 Komarala V K, Bradley A L, Rakovich Y P, Byrne S J, Gun'ko Y K and Rogach A L 2008 Appl. Phys. Lett. 93 123102 16 Komarala V K, Rakovich Y P, Bradley A, Byrne S J, Gun'ko Y K, Gaponik N and Eychm\"uller A 2006 Appl. Phys. Lett. 89 253118 17 Chen C T, Lai C W, Liou Y R, Pan H J, Chou P T and Chen Y F 2012 Appl. Phys. Lett. 101 041908 18 Yang J Y and Chen H J 2019 Acta Phys. Sin. 68 246302 (in Chinese) 19 Singh A K, Gryczynski K G, McDaniel F D, Park S Y, Kim M and Neogi A 2010 Appl. Phys. Express 3 102201 20 Ochiai T, Isozaki K, Pincella F, Taguchi T, Nittoh K-i and Miki K 2013 Appl. Phys. Express 6 102001 21 Tanaka T, Totoki Y, Fujiki A, Zettsu N, Miyake Y, Akai-Kasaya M, Saito A, Ogawa T and Kuwahara Y 2011 Appl. Phys. Express 4 032105 22 Zhang Q Q, Hu J Y, Jing M Y, Li B, Qin C B, Li Y, Xiao L T and Jia S T 2019 Acta Phys. Sin. 68 017803 (in Chinese) 23 Qin C C, Cui M H, Song D D and He W aps.68.20190291 2019 Acta Phys. Sin. 68 107801 (in Chinese) 24 Kikawada M, Ono A, Inami W and Kawata Y 2015 Appl. Phys. Express 8 072401 25 Hepojoki S, Nurmi V, Vaheri A, Hedman K, Vapalahti O and Hepojoki J 2014 PloS One 9 e106432 26 Baldo B, Paganetti P, Grueninger S, Marcellin D, Kaltenbach L S, Lo D C, Semmelroth M, Zivanovic A, Abramowski D and Smith D 2012 Chemistry & Biology 19 264 27 Cohen N, Zahavy E, Zichel R and Fisher M 2016 Analyt. Bioanalyt. Chem. 408 5179 28 Feng Y, Liu L, Hu S, Ren Y, Liu Y, Xiu J and Zhang X 2016 Opt. Express 24 19627 29 Ragab A, Gadallah A S, Da Ros T, Mohamed M and Azzouz I 2014 Opt. Commun. 314 86 30 Rodr\'íguez-Fern\'andez J, Perez-Juste J, Mulvaney P and Liz-Marzan L M 2005 J. Phys. Chem. B 109 14257 31 Pan L Y, Zhang Y L, Wang H Y, Liu H, Luo J S, Xia H, Zhao L, Chen Q D, Xu S P and Gao B R 2011 Nanoscale 3 2882 32 Li L, Zhao J F, Won N, Jin H, Kim S and Chen J Y 2012 Nanoscale Res. Lett. 7 386 33 Duong H D, Lee J W and Rhee J I 0342 Biosensing and Nanomedicine VII, p. 916613 34 Song H Y, Wong T I, Guo S, Deng J, Tan C, Gorelik S and Zhou X 2015 Sensors and Actuators B: Chemical 221 207 35 Mandal A and Tamai N 2008 J. Phys. Chem. C 112 8244 36 Mandal A and Tamai N 2011 Chem. Phys. Lett. 507 248 37 Saxena A M, Udgaonkar J B and Krishnamoorthy G 2006 J. Molecular Biology 359 174 38 Wu K, Rodr\'íguez-Còrdoba W E, Yang Y and Lian T 2013 Nano Lett. 13 5255 39 Govorov A O, Bryant G W, Zhang W, Skeini T, Lee J, Kotov N A, Slocik J M and Naik R R 2006 Nano Lett. 6 984 40 Zhao W W, Wang J, Xu J J and Chen H Y 2011 Chem. Commun. 47 10990 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|