Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074206    DOI: 10.1088/1674-1056/ab8ac6
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution

Cheng-Bin Liang(梁成斌)1, Yan-Rong Song(宋晏蓉)1, Zi-Kai Dong(董自凯)1, Yun-Feng Wu(吴云峰)1, Jin-Rong Tian(田金荣)1, Run-Qin Xu(徐润亲)2
1 College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
2 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We demonstrate a self-started, long-term stable polarization-maintaining mode-locked fiber laser based on the nonlinear polarization evolution technique. A polarized beam splitter is inserted into the cavity of the linear polarization-maintaining fiber laser to facilitate self-started mode-locking. Pulses with single pulse energy of 26.9 nJ and average output power of 73.9 mW are obtained at the pump power of 600 mW. The transmission characteristics of artificial saturable absorber used in this laser are analyzed theoretically, the influence of the half-wave plate state on mode-locking is discussed, and the mode-locking range is obtained, which is well consistent with the experimental results.
Keywords:  polarization-maintaining      mode-locking      nonlinear polarization evolution  
Received:  04 March 2020      Revised:  06 April 2020      Published:  05 July 2020
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575011 and 61975003) and the Beijing Natural Science Foundation, China (Grant No. 4192015).
Corresponding Authors:  Yan-Rong Song     E-mail:  yrsong@bjut.edu.cn

Cite this article: 

Cheng-Bin Liang(梁成斌), Yan-Rong Song(宋晏蓉), Zi-Kai Dong(董自凯), Yun-Feng Wu(吴云峰), Jin-Rong Tian(田金荣), Run-Qin Xu(徐润亲) Pulse generation in Yb-doped polarization-maintaining fiber laser by nonlinear polarization evolution 2020 Chin. Phys. B 29 074206

[1] Pan W W, Zhou J Q, Zhang L and Feng Y 2019 Opt. Express 27 17905
[2] Hänsel W, Hoogland H, Giunta M, Schmid S, Steinmetz T, Doubek R, Mayer R, Dobner S, Cleff C, Fischer M and Holzwarth R 2017 Appl. Phys. B 123 331
[3] Hao Q, Chen W H, Yang K W, Zhu X Y, Zhang Q X and Zeng H P 2016 IEEE Photon. Technol. Lett. 28 87
[4] Zhang L, Zhou J Q, Wang Z K, Gu X J and Feng Y 2014 IEEE Photon. Technol. Lett. 26 1314
[5] Sobon G, Sotor J and Abramski K M 2012 Laser Phys. Lett. 9 581
[6] Xu J, Wu S D, Liu J, Li Y P, Ren J, Yang Q H and Wang P 2014 IEEE Photon. Tech. Lett. 26 346
[7] Meng K, Zhu L Q and Luo F 2017 Chin. Phys. B. 26 014205
[8] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett. 121 023905
[9] Liu X M and Pang M 2019 Laser & Photon. Rev. 13 1800333
[10] Jeong H, Choi S Y, Rotermund F, Lee K and Yeom D I 2016 J. Lightwave Technol. 34 3503
[11] Sotor J, Sobon G, Jagiello J, Lipinska L and Abramski K M 2015 J. Appl. Phys. 117 133103
[12] Shen X L, Li W X and Zeng H P 2014 Appl. Phys. Lett. 105 101109
[13] Szczepanek J, Kardas T M, Radzewicz C and Stepanenko Y 2017 Opt. Lett. 42 575
[14] Wang Y Z, Zhang L Q, Zhuo Z and Guo S Z 2016 Appl. Opt. 55 5766
[15] Zhou L, Liu Y, Xie G H, Zhang W C, Zhu Z W, Ouyang C, Gu C L and Li W X 2019 Appl. Phys. Express 12 052017
[16] Szczepanek J, Kardas T M, Radzewicz C and Stepanenko Y 2018 Opt. Express 2 13590
[17] Zhou J Q, Pan W W, Gu X J, Zhang L and Feng Y 2018 Opt. Express 26 4166
[18] Peng Z G, Cheng Z C, Bu X B, Hong C, Li H J, Shi Y H and Wang P 2018 IEEE Photon. Technol. Lett. 30 2111
[19] Szczepancek J, Kardaś T M, Piechal B and Stepanenko Y 2019 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2019 pp. 1-2
[20] Zhu X 1994 Appl. Opt. 33 3502
[21] Xia H, Li H, Wang Z, Chen Y, Zhang X, Tang X and Liu Y 2014 Opt. Commun. 330 147
[22] Shang J, Lu X, Jiang T, Lu Y and Yu S 2018 Opt. Lett. 43 3301
[23] Xu R Q, Song Y R, Dong Z K, Li K X and Tian J R 2017 Appl. Opt. 56 1674
[24] Cheng Z C, Li H H and Wang P 2015 Opt. Express 23 5972
[25] Zhao L M, Lu C, Tam H Y, Wai P K A and Tang D Y 2009 Appl. Opt. 48 5131
[26] Tan J, Chen W M and Yu M F 2007 Opto-Electron. Eng. 34 120
[27] Nielsen C K and Keiding S R 2007 Opt. Lett. 32 1474
[28] Yang T, Jing H M and Liu D H 2006 Journal of Beijing Normal University (Natural Science) 42 477
[1] 575-fs passively mode-locked Yb:CaF2 ceramic laser
Cong Wang(王聪), Qian-Qian Hao(郝倩倩), Wei-Wei Li(李威威), Hai-Jun Huang(黄海军), Shao-Zhao Wang(王绍钊), Da-Peng Jiang(姜大朋), Jie Liu(刘杰), Bing-Chu Mei(梅炳初), Liang-Bi Su(苏良碧). Chin. Phys. B, 2020, 29(7): 074205.
[2] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[3] CsPbBr3 nanocrystal for mode-locking Tm-doped fiber laser
Yan Zhou(周延), Renli Zhang(张仁栗), Xia Li(李夏), Peiwen Kuan(关珮雯), Dongyu He(贺冬钰), Jingshan Hou(侯京山), Yufeng Liu(刘玉峰), Yongzheng Fang(房永征), Meisong Liao(廖梅松). Chin. Phys. B, 2019, 28(9): 094203.
[4] 7.6-W diode-pumped femtosecond Yb: KGW laser
Yan-Fang Cao(曹艳芳), Xiang-Hao Meng(孟祥昊), Jun-Li Wang(王军利), Zhao-Hua Wang(王兆华), Meng-Yao Cheng(程梦尧), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(4): 044205.
[5] Self-starting all-fiber PM Er: laser mode locked by a biased nonlinear amplifying loop mirror
Ke Yin(殷科), Yi-Ming Li(李仪茗), Yan-Bin Wang(王彦斌), Xin Zheng(郑鑫), Tian Jiang(江天). Chin. Phys. B, 2019, 28(12): 124203.
[6] Observation of stable bound soliton with dual-wavelength in a passively mode-locked Er-doped fiber laser
Yu Zheng(郑煜), Jin-Rong Tian(田金荣), Zi-Kai Dong(董自凯), Run-Qin Xu(徐润亲), Ke-Xuan Li(李克轩), Yan-Rong Song(宋晏蓉). Chin. Phys. B, 2017, 26(7): 074212.
[7] Tunable second harmonic generation from a Kerr-lens mode-locked Yb: YCa4O(BO3)3 femtosecond laser
Zi-Ye Gao(高子叶), Jiang-Feng Zhu(朱江峰), Zheng-Mao Wu(吴正茂), Zhi-Yi Wei(魏志义), Hao-Hai Yu(于浩海), Huai-Jin Zhang(张怀金), Ji-Yang Wang(王继扬). Chin. Phys. B, 2017, 26(4): 044202.
[8] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[9] Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb: YAG thin-disk oscillator
Yingnan Peng(彭英楠), Jinwei Zhang(张金伟), Zhaohua Wang(王兆华), Jiangfeng Zhu(朱江峰), Dehua Li(李德华), Zhiyi Wei(魏志义). Chin. Phys. B, 2016, 25(9): 094207.
[10] 980-nm all-fiber mode-locked Yb-doped phosphate fiber oscillator based on semiconductor saturable absorber mirror and its amplifier
Ping-Xue Li(李平雪), Yi-Fei Yao(姚毅飞), Jun-Jie Chi(池俊杰), Hao-Wei Hu(胡浩伟), Guang-Ju Zhang(张光举), Bo-Xing Liang(梁博兴), Meng-Meng Zhang(张孟孟), Chun-Mei Ma(马春媚), Ning Su(苏宁). Chin. Phys. B, 2016, 25(8): 084207.
[11] Diode-pumped Kerr-lens mode-locked femtosecond Yb:YAG ceramic laser
Zi-Ye Gao(高子叶), Jiang-Feng Zhu(朱江峰), Ke Wang(汪珂), Jun-Li Wang(王军利), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(2): 024205.
[12] Passive harmonic mode-locking of Er-doped fiber laser using CVD-grown few-layer MoS2 as a saturable absorber
Xia Han-Ding, Li He-Ping, Lan Chang-Yong, Li Chun, Deng Guang-Lei, Li Jian-Feng, Liu Yong. Chin. Phys. B, 2015, 24(8): 084206.
[13] Fabrication of 16 W all-normal-dispersion mode-locked Yb-doped rod-type fiber laser with large-mode area
Lü Zhi-Guo, Teng Hao, Wang Li-Na, Wang Rui, Wang Jun-Li, Wei Zhi-Yi. Chin. Phys. B, 2015, 24(11): 114203.
[14] A 1.7-ps pulse mode-locked Yb3+:Sc2SiO5 laser with a reflective graphene oxide saturable absorber
Ge Ping-Guang, Su Li-Ming, Liu Jie, Zheng Li-He, Su Liang-Bi, Xu Jun, Wang Yong-Gang. Chin. Phys. B, 2015, 24(1): 014207.
[15] Diode-pumped self-starting mode-locked femtosecond Yb:YCa4O(BO3)3 laser
Gao Zi-Ye, Zhu Jiang-Feng, Tian Wen-Long, Wang Jun-Li, Wang Qing, Zhang Zhi-Guo, Wei Zhi-Yi, Yu Hao-Hai, Zhang Huai-Jin, Wang Ji-Yang. Chin. Phys. B, 2014, 23(5): 054207.
No Suggested Reading articles found!