Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056402    DOI: 10.1088/1674-1056/ab820f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy

Yi-Fan Shen(沈逸凡)1, Xi-Bo Yin(尹锡波)2, Chao-Fan Xu(徐超凡)2, Jing He(贺靖)2, Jun-Ye Li(李俊烨)2, Han-Dong Li(李含冬)2, Xiao-Hong Zhu(朱小红)1, Xiao-Bin Niu(牛晓滨)2
1 College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China;
2 School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Epitaxial growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates are studied. The In2Se3 thin films grown below the β-to-α phase transition temperature (453 K) are characterized to be strained β-In2Se3 mixed with significant γ-In2Se3 phases. The pure-phased single-crystalline β-In2Se3 can be reproducibly achieved by in situ annealing the as-deposited poly-crystalline In2Se3 within the phase equilibrium temperature window of β-In2Se3. It is suggeted that the observed γ-to-β phase transition triggered by quite a low annealing temperature should be a rather lowered phase transition barrier of the epitaxy-stabilized In2Se3 thin-film system at a state far from thermodynamic equilibrium.
Keywords:  In2Se3      molecular beam epitaxy      single-crystalline      annealing and quench      phase transition  
Received:  31 January 2020      Revised:  14 March 2020      Published:  05 May 2020
PACS:  64.60.My (Metastable phases)  
  68.55.-a (Thin film structure and morphology)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  68.35.Gy (Mechanical properties; surface strains)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0306102 and 2018YFA0306703), the National Natural Science Foundation of China (Grant Nos. 61474014 and U1601208), and the Sichuan Science and Technology Program, China (Grant Nos. 2019YJ0202 and 20GJHZ0229).
Corresponding Authors:  Han-Dong Li, Xiao-Hong Zhu     E-mail:  hdli@uestc.edu.cn;xhzhu@scu.edu.cn

Cite this article: 

Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨) Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy 2020 Chin. Phys. B 29 056402

[1] Han G, Chen Z G, Drennan J and Zou J 2014 Small 10 2747
[2] Island J O, Blanter S I, Buscema M, Van der Zant H S J and Castellanos-Gomez A 2015 Nano Lett. 15 7853
[3] Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L and Yu B 2014 ACS Nano 8 514
[4] Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y and Zhu W G 2017 Nat. Commun. 8 14956
[5] Cui C J, Hu W J, Yan X X, Addiego C, Gao W P, Wang Y, Wang Z, Li L Z, Cheng Y C, Li P, Zhang X X, Alshareef H N, Wu T, Zhu W G, Pan X Q and Li L J 2018 Nano Lett. 18 1253
[6] Poh S M, Tan S J R, Wang H, Song P, Abidi I H, Zhao X X, Dan J D, Chen J S, Luo Z T, Pennycook S J, Castro Neto A H and Loh K P 2018 Nano Lett. 18 6340
[7] Zhai T Y, Fang X S, Liao M Y, Xu X J, Li L, Liu B D, Koide Y, Ma Y, Yao J N, Bando Y and Golberg D 2010 ACS Nano 4 1596
[8] Ho C H, Lin C H, Wang Y P, Chen Y C, Chen S H and Huang Y S 2013 ACS Appl. Mater. Interfaces 5 2269
[9] Li Q L, Liu C H, Nie Y T, Chen W H, Gao X, Sun X H and Wang S D 2014 Nanoscale 6 14538
[10] Li H D, Ren W Y, Wang G Y, Gao L, Peng R M, Li H, Zhang P Y, Shafa M, Tong X, Luo S Y, Zhou Z H, Ji H N, Wu J, Niu X B and Wang Z M 2016 J. Phys. D: Appl. Phys. 49 145108
[11] Chen J, Du G and Liu X Y 2015 Chin. Phys. B 24 057702
[12] Choi M S, Cheong B K, Ra C H, Lee S, Bae J H, Lee S, Lee G D, Yang C W, Hone J and Yoo W J 2017 Adv. Mater. 29 1703568
[13] Pandiana M, Matheswarana P, Gokul B, Sathyamoorthy R and Asokan K 2018 Appl. Surf. Sci. 449 55
[14] Lee H, Kang D H and Tran L 2005 Mater. Sci. Eng. B 119 196
[15] Jin B, Kang D, Kim J, Meyyappan M and Lee J S 2013 J. Appl. Phys. 113 164303
[16] Wu G J, Wang X D, Wang P, Huang H, Chen Y, Sun S, Shen H, Lin T, Wang J L, Zhang S T, Bian L F, Sun J L, Meng X J and Chu J H 2016 Nanotechnology 27 364002
[17] Zheng Z Q, Yao J D and Yang G W 2017 ACS Appl. Mater. Interfaces 9 7288
[18] Feng W, Gao F, Hu Y X, Dai M J, Liu H, Wang L F and Hu P A 2018 ACS Appl. Mater. Interfaces 10 27584
[19] Chaiken A, Nauka K, Gibson G A, Lee H, Yang C C, Wu J, Ager J W, Yu K M and Walukiewicz W 2003 J. Appl. Phys. 94 2390
[20] Okamoto T, Yamada A and Konagai M 1997 J. Cryst. Growth 175-176 1045
[21] Zheng Z Q, Yao J D, Xiao J and Yang G W 2016 J. Mater. Chem. C 4 8094
[22] Balakrishnan N, Staddon C R, Smith E F, Stec J, Gay D, Mudd G W, Makarovsky O, Kudrynskyi Z R, Kovalyuk Z D, Eaves L, PatanéA and Beton P H 2016 2D Mater. 3 025030
[23] Zhou S, Tao X and Gu Y 2016 J. Phys. Chem. C 120 4753
[24] Ren W Y, Li H D, Gao L, Li Y, Zhang Z Y, Long C J, Ji H N, Niu X B, Lin Y and Wang Z W 2017 Nano Res. 10 247
[25] Li H D, Yu S P, Li Y, Channa A I, Ji H N, Wu J, Niu X B and Wang Z M 2019 Appl. Phys. Lett. 115 041602
[26] Li H D, Wang Z Y, Guo X, Wong T L, Wang N and Xie M H 2011 Appl. Phys. Lett. 98 043104
[27] Yuan Y F, Cao X R, Sun Y, Su J, Liu C M, Cheng L, Yuan L H, Zhang H and Li J 2017 RSC Adv. 7 46431
[28] Zhang F, Wang Z, Dong J Y, Nie A M, Xiang J Y, Zhu W G, Liu Z Y and Tao C G 2019 ACS Nano 13 8004
[29] Ke F, Liu C L, Gao Y, Zhang J K, Tan D Y, Han Y H, Ma Y Z, Shu J F, Yang W G, Chen B, Mao H K, Chen X J and Gao C X 2014 Appl. Phys. Lett. 104 212102
[30] Rasmussen A M, Mafi E, Zhu W G, Gu Y and McCluskey M D 2016 High Press. Res. 36 549
[31] Huang Y P, Huang X L, Wang X, Zhang W T, Zhou D, Zhou Q, Liu B B and Cui T 2019 Chin. Phys. B 28 096402
[32] Li H D, Zhang X N, Zhang Z, Mei Z X, Du X L and Xue Q K 2007 J. Appl. Phys. 101 106102
[1] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[2] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[3] Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots
Guangze Lu(陆光泽), Zunren Lv(吕尊仁), Zhongkai Zhang(张中恺), Xiaoguang Yang(杨晓光), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(1): 017802.
[4] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[5] Monolithic epitaxy and optoelectronic properties of single-crystalline γ-In2Se3 thin films on mica
Xibo Yin(尹锡波), Yifan Shen(沈逸凡), Chaofan Xu(徐超凡), Jing He(贺靖), Junye Li(李俊烨), Haining Ji(姬海宁), Jianwei Wang(王建伟), Handong Li(李含冬), Xiaohong Zhu(朱小红), Xiaobin Niu(牛晓滨), and Zhiming Wang(王志明). Chin. Phys. B, 2021, 30(1): 017701.
[6] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[7] Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2
Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇). Chin. Phys. B, 2020, 29(7): 076101.
[8] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[9] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[10] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[11] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[12] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[13] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[14] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[15] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍), Yi-Nuo Liu(刘一诺), Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
No Suggested Reading articles found!