CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
STM study of selenium adsorption on Au(111) surface |
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东) |
Department of Physics, the Chinese University of Hong Kong, Shatin, Hong Kong, China |
|
|
Abstract Adsorption of chalcogen atoms on metal surfaces has attracted increasing interest for both the fundamental research and industrial applications. Here, we report a systematic study of selenium (Se) adsorption on Au(111) at varies substrate temperatures by scanning tunneling microscopy. At room temperature, small Se clusters are randomly dispersed on the surface. Increasing the temperature up to 200℃, a well-ordered lattice of Se molecules consisting of 8 Se atoms in ring-like structure is formed. Further increasing the temperature to 250℃ gives rise to the formation of Se monolayer with Au(111)-√3×√3 lattices superimposed with a quasi-hexagonal lattice. Desorption of Se atoms rather than the reaction between the Se atoms and the Au substrate occurs if further increasing the temperature. The ordered structures of selenium monolayers could serve as templates for self-assemblies and our findings in this work might provide insightful guild for the epitaxial growth of the two-dimensional transition metal dichalcogenides.
|
Received: 20 February 2020
Revised: 12 March 2020
Accepted manuscript online:
|
PACS:
|
68.37.Ef
|
(Scanning tunneling microscopy (including chemistry induced with STM))
|
|
68.43.-h
|
(Chemisorption/physisorption: adsorbates on surfaces)
|
|
74.62.-c
|
(Transition temperature variations, phase diagrams)
|
|
Fund: Project supported by the Direct Grant for Research of CUHK, China (Grant Nos. 4053306 and 4053348). |
Corresponding Authors:
Yande Que, Xudong Xiao
E-mail: ydque@phy.cuhk.edu.hk;xdxiao@phy.cuhk.edu.hk
|
Cite this article:
Bin Liu(刘斌), Yuan Zhuang(庄源), Yande Que(阙炎德), Chaoqiang Xu(徐超强), Xudong Xiao(肖旭东) STM study of selenium adsorption on Au(111) surface 2020 Chin. Phys. B 29 056801
|
[1] |
Guo Q and Li F 2014 Phys. Chem. Chem. Phys. 16 19074
|
[2] |
Yang G, Qian Y, Engtrakul C, Sita L R and Liu G Y 2000 J. Phys. Chem. B 104 9059
|
[3] |
Akkerman H B, Naber R C G, Jongbloed B, Van Hal P A, Blom P W M, De Leeuw D M and De Boer B 2007 Proc. Natl. Acad. Sci. USA 104 11161
|
[4] |
Vericat C, Vela M E, Benitez G, Carro P and Salvarezza R C 2010 Chem. Soc. Rev. 39 1805
|
[5] |
Lee M, Kang S, Oh M, Chae J, Yu J and Kuk Y 2019 Surf. Sci. 685 19
|
[6] |
Zhang S, Guan J, Wang Y, Berlijn T, Johnston S, Jia X, Liu B, Zhu Q, An Q, Xue S, Cao Y, Yang F, Wang W, Zhang J, Plummer E W, Zhu X and Guo J 1955 Phys. Rev. B 97 1
|
[7] |
Dai J, Wang W, Brahlek M, Koirala N, Salehi M, Oh S and Wu W 2015 Nano Res. 8 1222
|
[8] |
Liu H, Zheng H, Yang F, Jiao L, Chen J, Ho W, Gao C, Jia J and Xie M 2015 ACS Nano 9 6619
|
[9] |
Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
|
[10] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[11] |
Berghäuser G, Bernal-Villamil I, Schmidt R, Schneider R, Niehues I, Erhart P, de Vasconcellos S M, Bratschitsch R, Knorr A and Malic E 2018 Nat. Commun. 9 971
|
[12] |
Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A and Kis A 2013 Nat. Nanotechnol. 8 497
|
[13] |
Ugeda M M, Bradley A J, Shi S F, Felipe H, Zhang Y, Qiu D Y, Ruan W, Mo S K, Hussain Z and Shen Z X 2014 Nat. Mater. 13 1091
|
[14] |
Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
|
[15] |
Jin Y, Keum D H, An S, Kim J, Lee H S and Lee Y H 2015 Adv. Mater. 27 5534
|
[16] |
Xie L and Cui X 2016 Proc. Natl. Acad. Sci. USA 113 3746
|
[17] |
Mouafo L D N, Godel F, Froehlicher G, Berciaud S, Doudin B, Kamalakar M V and Dayen J F 2016 2D Mater. 4 15037
|
[18] |
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
|
[19] |
Husain S, Kumar A, Kumar P, Kumar A, Barwal V, Behera N, Choudhary S, Svedlindh P and Chaudhary S 2018 Phys. Rev. B 98 180404
|
[20] |
Voiry D, Mohite A and Chhowalla M 2015 Chem. Soc. Rev. 44 2702
|
[21] |
Xu H, Han D, Bao Y, Cheng F, Ding Z, Tan S J R and Loh K P 2018 Nano Lett. 18 5085
|
[22] |
Cheng F, Hu Z, Xu H, Shao Y, Su J, Chen Z, Ji W and Loh K P 2019 ACS Nano 13 2316
|
[23] |
Lister T E and Stickney J L 1996 J. Phys. Chem. 100 19568
|
[24] |
Sorenson T A, Lister T E, Huang B M and Stickney J L 1999 J. Electrochem. Soc. 146 1019
|
[25] |
Jia J, Bendounan A, Kotresh H M N, Chaouchi K, Sirotti F, Sampath S and Esaulov V A 2013 J. Phys. Chem. C 117 9835
|
[26] |
Nagashima S 1997 Appl. Surf. Sci. 121-122 116
|
[27] |
Becker J, Rademann K and Hensel F 1991 Z. Phys. D: At. Mol. Clust. 19 233
|
[28] |
Benamar A, Rayane D, Melinon P, Tribollet B and Broyer M 1991 Z. Phys. D: At. Mol. Clust. 19 237
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|