Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 043103    DOI: 10.1088/1674-1056/ab6587
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography

Dianwu Wang(王殿武)1, Chongyu Wang(王崇愚)1,2, Tao Yu(于涛)1, Wenqing Liu(刘文庆)3
1 Central Iron and Steel Research Institute,Beijing 100081,China;
2 Department of Physics,Tsinghua University,Beijing 100084,China;
3 Key Laboratory for Microstructures,Shanghai University,Shanghai 200444,China
Abstract  The phase partition and site preference of Re atoms in a ternary Ni-Al-Re model alloy, including the electronic structure of different Re configurations, are investigated with first-principles calculations and atom probe tomography. The Re distribution of single, nearest neighbor (NN), next-nearest neighbor (NNN), and cluster configurations are respectively designed in the models with γ and γ' phases. The results show that the Re atoms tend to entering γ' phase and the Re atoms prefer to occupy the Al sites in γ' phase. The Re cluster with a combination of NN and NNN Re-Re pair configuration is not preferred than the isolated Re atom in the Ni-based superalloys, and the configuration with isolated Re atom is more preferred in the system. Especially, the electronic states are analyzed and the energetic parameters are calculated. The electronic structure analyses show there exists strong Ni-Re electronic interaction and it is mainly contributed by the d-d hybridization. The characteristic features of the electronic states of the Re doping effects are also given. It is also found that Re atoms prefer the Al sites in γ' side at the interface. The density of states at or near the Fermi level and the d-d hybridizations of NN Ni-Re are found to be important in the systems.
Keywords:  Re distribution      first-principles calculations      atom probe tomography      Ni-based superalloys  
Received:  20 December 2019      Published:  05 April 2020
PACS:  31.15.A- (Ab initio calculations)  
  31.15.ae (Electronic structure and bonding characteristics)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701503).
Corresponding Authors:  Chongyu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆) Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography 2020 Chin. Phys. B 29 043103

[1] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge University Press)
[2] Tin S, Zhang L, Hobbs R A, Yeh A C, Rae C M F and Broomfield B 2008 Superalloys 2008, eds. Reed R C, Green K A, Caron P, Gabb T P, Fahrmann M G, Huron E S and Woodard S A (Warrendale, PA: The Minerals, Metals & Materials Society) p. 81
[3] Murakumo T, Kobayashi T, Koizumi Y and Harada H 2004 Acta Mater. 52 3737
[4] Erickson G L 1996 Superalloys 1996, eds. Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Pollock T M, and Woodford D A (Warrendale, PA: The Minerals, Metals & Materials Society) p. 35
[5] Blavette D, Caron P and Khan T 1986 Scr. Metall. 20 1395
[6] Giamei A F and Anton D L 1985 Metall. Trans. A 16 1997
[7] Murakami H, Harada H and Bhadeshia H K D H 1994 Appl. Surf. Sci. 76-77 177
[8] Yu X X, Wang C Y, Zhang X N, Yan P and Zhang Ze 2014 J. Alloys Compd. 582 299
[9] Chen K, Zhao L R and Tse J S 2003 Mater. Sci. Eng. A 360 197
[10] Peng L, Peng P, Liu Y G, He S, Wei H, Jin T and Hu Z Q 2012 Comput. Mater. Sci. 63 292
[11] Liu F H and Wang C Y 2017 RSC Adv. 7 19124
[12] Wanderka N and Glatzel U 1995 Mater. Sci. Eng. A 203 69
[13] Rüsing J, Wanderka N, Czubayko U, Naundorf V, Mukherji D and Rösler J 2002 Scr. Mater. 46 235
[14] Zhu T, Wang C Y and Gan Y 2010 Acta Mater. 58 2045
[15] Mottura A, Finnis M W and Reed R C 2012 Acta Mater. 60 2866
[16] Lu B K, Wang C Y and Du Z H 2018 Chin. Phys. B 27 097102
[17] Ding Q Q, Li S Z, Chen L Q, Han X D, Zhang Ze, Yu Q and Li J X 2018 Acta Mater. 154 137
[18] Zhu T and Wang C Y 2005 Phys. Rev. B 72 014111
[19] Srinivasan R, Banerjee R, Hwang J Y, Viswanathan G B, Tiley J, Dimiduk D M and Fraser H L 2009 Phys. Rev. Lett. 102 086101
[20] Hwang J Y, Nag S, Singh A R P, Srinivasan R, Tiley J, Fraser H L and Banerjee R 2009 Scr. Mater. 61 92
[21] Reed R C, Yeh A C, Tin S, Babu S S and Miller M K 2004 Scr. Mater. 51 327
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[24] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[25] Blöchl P E 1994 Phys. Rev. B 50 17953
[26] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[28] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[29] Miller M K 2000 Atom Probe Tomography: Analysis at the Atomic Level (New York: Springer Science & Business Media)
[30] Hellman O C, Vandenbroucke J A, Rüsing J, Isheim E and Seidman D N 2000 Microsc. Microanalysis 6 437
[31] Wang S Y, Wang C Y, Sun J H, Duan W H and Zhao D L 2001 Phys. Rev. B 65 035101
[32] Sun M, Li Z, Zhu G Z, Liu W Q, Liu S H and Wang C Y 2016 Commun. Comput. Phys. 20 603
[33] Wang C Y, Feng A, Gu B L, Liu F S and Chen Y 1988 Phys. Rev. B 38 3905
[34] Wang C Y and Zhao D L 1993 MRS Proc. 318 571
[35] Wang F H and Wang C Y 1998 Phys. Rev. B 57 289
[36] Momma K and Izumi F 2011 J. Appl. Crystallogr. 44 1272
[37] Ellis D E and Painter G S 1970 Phys. Rev. B 2 2887
[38] Delley B, Ellis D E, Freeman A J, Baerends E J and Post D 1983 Phys. Rev. B 27 2132
[39] Xu J H, Oguchi T and Freeman A J 1987 Phys. Rev. B 36 4186
[40] Wen M R and Wang C Y 2016 RSC Adv. 6 77489
[1] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[2] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[6] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[7] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[8] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[9] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[10] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[11] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[12] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[13] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[14] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[15] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
No Suggested Reading articles found!