Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 023102    DOI: 10.1088/1674-1056/ab610b
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility

Yuan Sun(孙源)1, Bin Xu(徐斌)2, Lin Yi(易林)3
1 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China;
2 School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China;
3 Department of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Searching for two-dimensional (2D) stable materials with direct band gap and high carrier mobility has attracted great attention for their electronic device applications. Using the first principles calculations and particle swarm optimization (PSO) method, we predict a new 2D stable material (HfN2 monolayer) with the global minimum of 2D space. The HfN2 monolayer possesses direct band gap (~1.46 eV) and it is predicted to have high carrier mobilities (~103 cm2·V-1·s-1) from deformation potential theory. The direct band gap can be well maintained and flexibly modulated by applying an easily external strain under the strain conditions. In addition, the newly predicted HfN2 monolayer possesses good thermal, dynamical, and mechanical stabilities, which are verified by ab initio molecular dynamics simulations, phonon dispersion and elastic constants. These results demonstrate that HfN2 monolayer is a promising candidate in future microelectronic devices.
Keywords:  HfN2 monolayer      first principles      electronic structure      carrier mobility  
Received:  05 November 2019      Revised:  08 December 2019      Published:  05 February 2020
PACS:  31.15.A- (Ab initio calculations)  
  73.20.At (Surface states, band structure, electron density of states)  
  68.55.ag (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation (Grant No. U1404108), the Innovative Talents of Universities in Henan Province of China (Grant No. 17HASTIT013), the Basic and Frontier Technology Research Program of Henan Province of China (Grant No. 162300410056), and the Key Scientific Research Projects of Higher Institutions in Henan Province of China (Grant No. 19A140018).
Corresponding Authors:  Yuan Sun, Bin Xu     E-mail:  yuansun44@163.com;hnsqxb@163.com

Cite this article: 

Yuan Sun(孙源), Bin Xu(徐斌), Lin Yi(易林) HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility 2020 Chin. Phys. B 29 023102

[1] Xie M, Zhang S, Cai B, Zhu Z, Zou Y and Zeng H 2016 Nanoscale 8 13407
[2] Wang B, Niu X, Ouyang Y, Zhou Q and Wang J 2018 J. Phys. Chem. Lett. 9 487
[3] Zhang C and Sun Q 2016 J. Phys. Chem. Lett. 7 2664
[4] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[5] Li F, Liu X, Wang Y and Li Y 2016 J. Mater. Chem. C 4 2155
[6] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[7] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[8] Zhou Q, Chen Q, Tong Y and Wang J 2016 Angew. Chem. Int. Ed. Engl. 55 11437
[9] Yu J, Wang L, Hao Z, Luo Y, Sun C, Wang J, Han Y, Xiong B and Li H 2019 Adv. Mater. 2019 1903407
[10] Li F, Wang Y, Wu H, Liu Z, Aeberhard U and Li Y 2017 J. Mater. Chem. C 5 11515
[11] Xiao X, Urbankowski P, Hantanasirisakul K, Yang Y, Sasaki S, Yang L, Chen C, Wang H, Miao L, Tolbert S H, Billinge S J L, Abruña H D, May S J and Gogotsi Y 2019 Adv. Funct. Mater. 29 1809001
[12] Wang B, Wu Q, Zhang Y, Ma L and Wang J 2019 ACS Appl. Mater. Inter. 11 33231
[13] Wei Y, Ma Y, Wei W, Li M, Huang B and Dai Y 2018 J. Phys. Chem. C 122 8102
[14] Frey N C, Kumar H, Anasori B, Gogotsi Y and Shenoy V B 2018 ACS Nano 12 6319
[15] Zhao W J and Xu B 2012 Comput. Mater. Sci. 65 372
[16] Zhang C, Liu J, Shen H, Li X Z and Sun Q 2017 Chem. Mater. 29 8588
[17] Gong S, Zhang C, Wang S and Wang Q 2017 J. Phys. Chem. C 121 10258
[18] Wu F, Huang C, Wu H, Lee C, Deng K, Kan E and Jena P 2015 Nano Lett. 15 8277
[19] Li J, Gao G, Min Y and Yao K 2016 Phys. Chem. Chem. Phys. 18 28018
[20] Liu Z, Liu J and Zhao J 2017 Nano Res. 10 1972
[21] Liu J, Liu Z, Song T and Cui X 2017 J. Mater. Chem. C 5 727
[22] Anand S, Thekkepat K and Waghmare U V 2015 Nano Lett. 16 126
[23] Zhou L, Zhuo Z, Kou L, Du A and Tretiak S 2017 Nano Lett. 17 4466
[24] Chae S H, Jin Y, Kim T S, Chung D S, Na H, Nam H, Kim H, Perello D J, Jeong H Y, Ly T H and Lee Y H 2016 ACS Nano 10 1309
[25] Zhang J, Jiang R, Tuo Y, Yao T and Zhang D 2019 Acta Phys. Pol. A 135 546
[26] Takeyama M B, Sato M, Aoyagi E and Noya A 2014 Jpn. J. Appl. Phys. 53 02BC05
[27] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[28] Zhang H, Li Y, Hou J, Du A and Chen Z 2016 Nano Lett. 16 6124
[29] Wang B, Yuan S, Li Y, Shi L and Wang J 2017 Nanoscale 9 5577
[30] Yin H, Liu C, Zheng G P, Wang Y and Ren F 2019 Appl. Phys. Lett. 114 192903
[31] Wang B, Zhang Y, Ma L, Wu Q, Guo Y, Zhang X and Wang J 2019 Nanoscale 11 4204
[32] Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S H, Gong X and Xiang H 2011 J. Am. Chem. Soc. 133 16285
[33] Gu T, Luo W and Xiang H 2017 WIREs: Comput. Mol. Sci. 7 e1295
[34] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[35] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207
[37] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[38] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[39] Cai Y, Zhang G and Zhang Y W 2014 J. Am. Chem. Soc. 136 6269
[40] MolinaS ánchez A and Wirtz L 2011 Phys. Rev. B 84 155413
[41] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[42] Zhang H and Wang R 2011 Physica B 406 4080
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[5] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[6] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[7] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[10] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[11] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[12] Doping effects on the stacking fault energies of the γ' phase in Ni-based superalloys
Weijie Li(李伟节), Chongyu Wang(王崇愚). Chin. Phys. B, 2020, 29(2): 026401.
[13] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
[14] First principles study of post-boron carbide phases with icosahedra broken
Ming-Wei Chen(陈明伟), Zhao Liang(梁钊), Mei-Ling Liu(刘美玲), Uppalapati Pramod Kumar, Chao Liu(刘超)†, and Tong-Xiang Liang(梁彤祥)‡. Chin. Phys. B, 2020, 29(10): 103102.
[15] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
No Suggested Reading articles found!